Skip to main content
Log in

Microstructure and Mechanical Properties of Co21Cr22Cu22Fe21Ni14 Processed by High Pressure Torsion and Annealing

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The strengthening mechanisms of Co21Cr22Cu22Fe21Ni14 multiple-principal element alloy processed by high pressure torsion (HPT) and annealing were examined. Two face-centered cubic (FCC) phases were observed in the as-cast alloy; one was a Cu-rich phase and the other was a Cu-lean one. In the HPT process, the microhardness increased from 190 HV to 470 HV at a strain of 157 due to strain hardening and grain refinement hardening. X-ray diffraction showed that the lattice parameters of the two FCC phases became closer to each other at higher HPT strain, indicating the alloying of Cu into the Cu-lean matrix. The HPT processed specimens were annealed at 500°C, 550°C, 600°C, and 650°C. The microhardness increased to 540 HV after annealing at temperatures lower than 650°C, whereas it decreased when the specimen was annealed at 650°C. The mean grain size of the specimens annealed at temperatures lower than 650°C was much smaller than 100 nm, and Cu-rich clusters with sizes ranging from 2 nm to 32 nm were distributed homogeneously. The reasons for the formation of the Cu-rich nano-clusters were discussed from a perspective of the positive mixing enthalpy of Cu in the alloy and thermalenergy for Cu diffusion at a given temperature. The dissolution and partitioning of two FCC phases played a key role in strengthening the Co21Cr22Cu22Fe21Ni14 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  2. J.-W. Yeh, JOM 65, 1759 (2013).

    Article  Google Scholar 

  3. K. Zhang and Z. Fu, Intermetallics 22, 24 (2012).

    Article  MathSciNet  Google Scholar 

  4. M.C. Gao, JOM 66, 1964 (2014).

    Article  Google Scholar 

  5. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Scr. Mater. 68, 526 (2013).

    Article  Google Scholar 

  6. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).

    Article  Google Scholar 

  7. M.J. Yao, K.G. Pradeep, C.C. Tasan, and D. Raabe, Scr. Mater. 72–73, 5 (2014).

    Article  Google Scholar 

  8. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, Z.P. Lu, P.K. Liaw, and K.A. Dahmen, Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  9. W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, and Z. Fu, Intermetallics 56, 24 (2015).

    Article  Google Scholar 

  10. C. Zhu, Z.P. Lu, and T.G. Nieh, Acta Mater. 61, 2993 (2013).

    Article  Google Scholar 

  11. Z. Wu, H. Bei, F. Otto, G.M. Pharr, and E.P. George, Intermetallics 46, 131 (2014).

    Article  Google Scholar 

  12. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter, Acta Mater. 96, 258 (2015).

    Article  Google Scholar 

  13. K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, Acta Mater. 61, 4887 (2013).

    Article  Google Scholar 

  14. M.C. Gao, JOM 65, 1749 (2013).

    Article  Google Scholar 

  15. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).

    Article  Google Scholar 

  16. A. Takeuchi and A. Inoue, JIM Mater. Trans. 41, 1372 (2000).

    Article  Google Scholar 

  17. F. Zhang and U. Kattner, J. Phase Equilib. Diffus. 36, 1 (2015).

    Article  Google Scholar 

  18. A. Durga, K.C. Hari Kumar, and K.C. BS, Trans. Indian Inst. Met. 65, 375 (2012).

    Article  Google Scholar 

  19. F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, and U.R. Kattner, CALPHAD 45, 1 (2014).

    Article  Google Scholar 

  20. N. Park, I. Watanabe, D. Terada, Y. Yokoyama, P.K. Liaw, and N. Tsuji, Metall. Mater. Trans. A 46, 1481 (2015).

    Article  Google Scholar 

  21. N. Park, I. Watanabe, D. Terada, Y. Yokoyama, P.K. Liaw, and N. Tsuji, Metall. Mater. Trans. A 46, 3308 (2015).

    Article  Google Scholar 

  22. E. Botcharova, M. Heilmaier, J. Freudenberger, G. Drew, D. Kudashow, U. Martin, and L. Schultz, J. Alloys Compd. 351, 119 (2003).

    Article  Google Scholar 

  23. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).

    Article  Google Scholar 

  24. K. Uenishi, K.F. Kobayashi, K.N. Ishihara, and P.H. Shingu, Mater. Sci. Eng. A 134, 1342 (1991).

    Article  Google Scholar 

  25. J. Xu, U. Herr, T. Klassen, and R.S. Averback, J. Appl. Phys. 79, 3935 (1996).

    Article  Google Scholar 

  26. S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, and K. Hono, Acta Mater. 55, 2885 (2007).

    Article  Google Scholar 

  27. X. Sauvage, F. Wetscher, and P. Pareige, Acta Mater. 53, 2127 (2005).

    Article  Google Scholar 

  28. Y.F. Sun, H. Fujii, T. Nakamura, N. Tsuji, D. Todaka, and M. Umemoto, Scr. Mater. 65, 489 (2011).

    Article  Google Scholar 

  29. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

    Article  Google Scholar 

  30. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, Scr. Mater. 47, 893 (2002).

    Article  Google Scholar 

  31. J.A. Wert, X. Huang, G. Winther, W. Pantleon, and H.F. Poulsen, Mater. Today 10, 24 (2007).

    Article  Google Scholar 

  32. S. Khamsuk, N. Park, H. Adachi, D. Terada, and N. Tsuji, J. Mater. Sci. 47, 7841 (2012).

    Article  Google Scholar 

  33. M. Joshi, Y. Fukuta, S. Gao, N. Park, D. Terada, N. Tsuji, and I.O.P. Conf, Ser. Mater. Sci. Eng. 63, 012074 (2014).

    Google Scholar 

  34. C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Metall. Mater. Trans. A 36, 881 (2005).

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported financially by the Grant-in-Aid for Scientific Research on Innovative Area, ‘‘Bulk Nanostructured Metals’’ (Area No. 2201), the Grant-in-Aid for Scientific Research (A) (No. 24246114), the Grant-in-Aid for Challenging Exploratory Research (No. 26630365), and the Elements Strategy Initiative for Structural Materials (ESISM), all through the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (Contact No. 22102002). All the support is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nokeun Park or Nobuhiro Tsuji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, N., Li, X. & Tsuji, N. Microstructure and Mechanical Properties of Co21Cr22Cu22Fe21Ni14 Processed by High Pressure Torsion and Annealing. JOM 67, 2303–2309 (2015). https://doi.org/10.1007/s11837-015-1586-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1586-2

Keywords

Navigation