Skip to main content
Log in

Microstructure and Compressive Properties of Co21Cu16Fe21Ti21V21 High Entropy Alloy

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The phase components, microstructure, and compressive properties of a novel Co21Cu16Fe21Ti21V21 high entropy alloy in as-cast and annealed conditions were investigated. The phase composition in both states was composed of FCC+BCC. The BCC phase was the primary phase, and the FCC phase corresponded to Cu-rich regions. Through an annealing treatment, the yield strength, σ0.2, decreased from 1950 ± 15 MPa to 1600 ±15 MPa, but the elongation of around 13% changed slightly. In this work, the solid solution strengthening in the Cu-rich regions was deteriorated due to the ejection of the rest of principal elements via annealing, while the number of microvoids seemed to be decreased against those in the as-cast alloy. The combination of both factors simultaneously takes responsibility for the decreased strength and the enhanced elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Y. Zhang, X. Yang, and P.K. Liaw, “Alloy design and properties optimization of high-entropy alloys,” JOM 64 (7), 830–838 (2012).

    Article  CAS  Google Scholar 

  2. Y. Dong, Y. Lu, J. Kong, et al., “Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys,” J. Alloys Compd. 573, 96–101 (2013).

    Article  CAS  Google Scholar 

  3. B. Gludovatz, A. Hohenwarter, D. Catoor, et al., “A fracture-resistant high-entropy alloy for cryogenic applications,” Science 345 (6201), 1153–1158 (2014).

    Article  CAS  Google Scholar 

  4. J. W. Qiao, H. L. Jia, and P. K. Liaw, “Metallic glass matrix composites,” Mater. Sci. Eng., R 100, 1–69 (2016).

  5. Y. Zhang, T. T. Zuo, Z. Tang, et al., “Microstructures and properties of high-entropy alloys,” Prog. Mater Sci. 61, 1–93 (2014).

    Article  Google Scholar 

  6. J. W. Yeh, S. K. Chen, S. J. Lin, et al., “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater. 6, 299–303 (2004).

    Article  CAS  Google Scholar 

  7. B. Cantor, I. T. H. Chang, P. Knight, et al., “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng., A 375377, 213–218 (2004).

    Article  Google Scholar 

  8. S. Yoshida, T. Ikeuchi, T. Bhattacharjee, et al., “Effect of elemental combination on friction stress and Hall–Petch relationship in face-centered cubic high/medium entropy alloys,” Acta Mater. 171, 201–215 (2019).

    Article  CAS  Google Scholar 

  9. D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448-511 (2017).

    Article  CAS  Google Scholar 

  10. M. H. Tsai and J. W. Yeh, “High-entropy alloys: a critical review,” Mater. Res. Lett. 2 (3), 107–123 (2014).

    Article  Google Scholar 

  11. R. R. Eleti, T. Bhattacharjee, A. Shibata, et al., “Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy,” Acta Mater. 171, 132–145 (2019).

    Article  CAS  Google Scholar 

  12. J. Li, Q. Fang, B. Liu, et al., “Transformation induced softening and plasticity in high entropy alloys,” Acta Mater. 147, 35–41 (2018).

    Article  CAS  Google Scholar 

  13. I. Basu, V. Ocelik, and J. T. M. De Hosson, “Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys,” Acta Mater. 150, 104–116 (2018).

    Article  CAS  Google Scholar 

  14. K. F. Quiambao, S. J. McDonnell, D. K. Schreiber, et al., “Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions,” Acta Mater. 164, 362–376 (2019).

    Article  CAS  Google Scholar 

  15. M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, and N. Wanderka, “Microstructure features of high-entropy equiatomic cast AlCrFeCoNiCu alloys,” Phys. Met. Metallogr. 114, 514–520 (2013).

    Article  Google Scholar 

  16. M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, N. Wanderka, and N. I. Kourov, “Specific features of cast high-entropy AlCrFeCoNiCu alloys produced by ultrarapid quenching from the melt,” Phys. Met. Metallogr. 114, 503–513 (2013).

    Article  Google Scholar 

  17. J. W. Yeh, S. K. Chen, J. Y. Gan, et al., “Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements,” Metall. Mater. Trans. A 35, 2533–2536 (2004).

    Article  Google Scholar 

  18. C. J. Tong, M. R. Chen, S. K. Chen, et al., “Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements,” Metall. Mater. Trans. A 36, 1263–1271 (2004).

    Article  Google Scholar 

  19. K. B. Zhang, Z. Y. Fu, J. Y. Zhang, et al., “Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys,” Mater. Sci. Eng., A 508 (1–2), 214–219 (2009).

    Article  Google Scholar 

  20. N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, et al., “Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys,” J. Alloys Compd. 628, 170–185 (2015).

    Article  CAS  Google Scholar 

  21. X. Wang, H. Xie, L. Jia, et al., “Effect of Ti, Al and Cu addition on structural evolution and phase constitution of FeCoNi system equimolar alloys,” Mater. Sci. Forum 724, 335–338 (2012).

    Article  CAS  Google Scholar 

  22. S. Singh, N. Wanderka, B. S. Murty, et al., “Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy,” Acta Mater. 59 (1), 182–190 (2011).

    Article  CAS  Google Scholar 

  23. S. Praveen, B. S. Murty, and R. S. Kottada, “Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys,” Mater. Sci. Eng., A 534, 83–89 (2012).

    Article  CAS  Google Scholar 

  24. M. H. Tsai, H. Yuan, G. Cheng, et al., “Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy,” Intermetallics 32, 329–336 (2013).

    Article  CAS  Google Scholar 

  25. L. Liu, J. B. Zhu, C. Zhang, et al., “Microstructure and the properties of FeCoCuNiSnx high entropy alloys,” Mater. Sci. Eng., A 548, 64–68 (2012).

    Article  Google Scholar 

  26. L. Liu, J. B. Zhu, L. Li, et al., “Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys,” Mater. Des. 44, 223–227 (2013).

    Article  CAS  Google Scholar 

  27. S. Samal, S. Mohanty, A. K. Misra, et al., “Mechanical behavior of novel suction cast Ti–Cu–Fe–Co–Ni high entropy alloys,” Mater. Sci. Forum 790–791, 503–508 (2014).

    Article  Google Scholar 

  28. Y. Lederer, C. Toher, K. S. Vecchio, et al., “The search for high entropy alloys: a high-throughput ab-initio approach,” Acta Mater. 159, 364–383 (2018).

    Article  CAS  Google Scholar 

  29. X.F. Wang, Y. Zhang, Y. Qiao, et al., “Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys,” Intermetallics 15 (3), 357–362 (2007).

    Article  CAS  Google Scholar 

  30. Z. Hu, Y. Zhan, G. Zhang, et al., “Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys,” Mater. Des. 31 (3), 1599–1602 (2010).

    Article  CAS  Google Scholar 

  31. S. Varalakshmi, M. Kamaraj, and B. S. Murty, “Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying,” Mater. Sci. Eng., A 527 (4–5), 1027–1030 (2010).

    Article  Google Scholar 

Download references

Funding

Financial support from Natural Science Foundation of Jiangsu Province of China (grant no. BK20181047) is pleased to acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, J.J., Yang, L., Xu, M.Q. et al. Microstructure and Compressive Properties of Co21Cu16Fe21Ti21V21 High Entropy Alloy. Phys. Metals Metallogr. 122, 1319–1325 (2021). https://doi.org/10.1134/S0031918X2113010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2113010X

Keywords:

Navigation