Skip to main content
Log in

Nanomechanical Behavior of CoCrFeMnNi High-Entropy Alloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The nanomechanical behavior of the Co20Cr20Fe20Mn20Ni20 high-entropy alloy was investigated in as-cast, rolled, annealed, and thin-film forms. Dislocation nucleation was studied by repeated indents at a low load for each of the different processing conditions. Distinct displacement bursts (pop in) were observed in the loading curve marked by incipient plasticity for all the samples. The as-cast and annealed samples showed pop ins for 100% of the indents, whereas the rolled and thin-film samples showed a much lower fraction of displacement bursts. This was explained by the high density of dislocations for the cold-worked and thin-film conditions. The strong depth dependence of hardness was explained by geometrically necessary dislocations. The nanomechanical behavior and twinned microstructure indicate low stacking-fault energy for this high-entropy alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Tsai and J. Yeh, Mater. Res. Lett. 2, 107 (2014).

    Article  Google Scholar 

  2. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw, Nature Commun. 6, 1 (2015).

    Article  Google Scholar 

  3. M.C. Gao and D.E. Alman, Entropy 15, 4504 (2013).

    Article  Google Scholar 

  4. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  5. C. Hsu, J. Yeh, S. Chen, and T. Shun, Metall. Mater. Trans. A 35, 1465 (2004).

    Article  Google Scholar 

  6. S. Ogata, Y. Umeno, and M. Kohyama, Modell. Simul. Mater. Sci. Eng. 17, 013001 (2009).

    Article  Google Scholar 

  7. S. Chen, W. Tang, Y. Kuo, S. Chen, C. Tsau, T. Shun, and J. Yeh, Mater. Sci. Eng. A 527, 5818 (2010).

    Article  Google Scholar 

  8. M. Chuang, M. Tsai, C. Tsai, N. Yang, S. Chang, J. Yeh, S. Chen, and S. Lin, J. Alloys Compd. 551, 12 (2013).

    Article  Google Scholar 

  9. M. Chuang, M. Tsai, W. Wang, S. Lin, and J. Yeh, Acta Mater. 59, 6308 (2011).

    Article  Google Scholar 

  10. C. Hsu, C. Juan, W. Wang, T. Sheu, J. Yeh, and S. Chen, Mater. Sci. Eng. A 528, 3581 (2011).

    Article  Google Scholar 

  11. P. Bhattacharjee, G. Sathiaraj, M. Zaid, J. Gatti, C. Lee, C. Tsai, and J. Yeh, J. Alloys Compd. 587, 544 (2014).

    Article  Google Scholar 

  12. M. Tsai, C. Wang, C. Tsai, W. Shen, J. Yeh, J. Gan, and W. Wu, J. Electrochem. Soc. 158, H1161 (2011).

    Article  Google Scholar 

  13. Y. Chen, T. Duval, U. Hong, J. Yeh, H. Shih, L. Wang, and J. Oung, Mater. Lett. 61, 2692 (2007).

    Article  Google Scholar 

  14. C. Lin and H. Tsai, Intermetallics 19, 288 (2011).

    Article  Google Scholar 

  15. O. Senkov, S. Senkova, D. Dimiduk, C. Woodward, and D. Miracle, J. Mater. Sci. 47, 6522 (2012).

    Article  Google Scholar 

  16. C. Tong, Y. Chen, J. Yeh, S. Lin, S. Chen, T. Shun, C. Tsau, and S. Chang, Metall. Mater. Trans. A 36, 881 (2005).

    Article  Google Scholar 

  17. M.A. Hemphill, T. Yuan, G. Wang, J. Yeh, C. Tsai, A. Chuang, and P. Liaw, Acta Mater. 60, 5723 (2012).

    Article  Google Scholar 

  18. Y. Ma, G. Peng, D. Wen, and T. Zhang, Mater. Sci. Eng. A 621, 111 (2015).

    Article  Google Scholar 

  19. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).

    Article  Google Scholar 

  20. B. Cantor, I. Chang, P. Knight, and A. Vincent, Mater. Sci. Eng. A 375, 213 (2004).

    Article  Google Scholar 

  21. C. Zhu, Z. Lu, and T. Nieh, Acta Mater. 61, 2993 (2013).

    Article  Google Scholar 

  22. R. Saha and W.D. Nix, Acta Mater. 50, 23 (2002).

    Article  Google Scholar 

  23. J. Mason, A. Lund, and C. Schuh, Phys. Rev. B 73, 054102 (2006).

    Article  Google Scholar 

  24. H. Bei, Y. Gao, S. Shim, E.P. George, and G.M. Pharr, Phys. Rev. B 77, 060103 (2008).

    Article  Google Scholar 

  25. M.M. Biener, J. Biener, A.M. Hodge, and A.V. Hamza, Phys. Rev. B 76, 165422 (2007).

    Article  Google Scholar 

  26. W. Gerberich, J. Nelson, E. Lilleodden, P. Anderson, and J. Wyrobek, Acta Mater. 44, 3585 (1996).

    Article  Google Scholar 

  27. T.F. Page, W.C. Oliver, and C.J. McHargue, J. Mater. Res. 7, 450 (1992).

    Article  Google Scholar 

  28. Y. Shibutani, T. Tsuru, and A. Koyama, Acta Mater. 55, 1813 (2007).

    Article  Google Scholar 

  29. C. Schuh, J. Mason, and A. Lund, Nature Mater. 4, 617 (2005).

    Article  Google Scholar 

  30. S. Shim, H. Bei, E.P. George, and G.M. Pharr, Scripta Mater. 59, 1095 (2008).

    Article  Google Scholar 

  31. Y. Chiu and A. Ngan, Acta Mater. 50, 1599 (2002).

    Article  Google Scholar 

  32. C.L. Kelchner, S. Plimpton, and J. Hamilton, Phys. Rev. B 58, 11085 (1998).

    Article  Google Scholar 

  33. J. Kiely and J. Houston, Phys. Rev. B 57, 12588 (1998).

    Article  Google Scholar 

  34. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H. Leipner, Phys. Rev. B 67, 172101 (2003).

    Article  Google Scholar 

  35. W. Wang, C. Jiang, and K. Lu, Acta Mater. 51, 6169 (2003).

    Article  Google Scholar 

  36. L. Zuo, A. Ngan, and G. Zheng, Phys. Rev. Lett. 94, 095501 (2005).

    Article  Google Scholar 

  37. H. Hertz, Miscellaneous Papers (London: Macmillan, 1896).

    MATH  Google Scholar 

  38. K.L. Johnson, Contact Mechanics (Cambridge: Cambridge University Press, 1987).

    Google Scholar 

  39. N. Stelmashenko, M. Walls, L. Brown, and Y.V. Milman, Acta Metall. Mater. 41, 2855 (1993).

    Article  Google Scholar 

  40. Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, and W. Soboyejo, Mater. Sci. Eng. A 427, 232 (2006).

    Article  Google Scholar 

  41. A.H. Almasri and G.Z. Voyiadjis, Acta Mech. 209, 1 (2010).

    Article  MATH  Google Scholar 

  42. P. Sadrabadi, K. Durst, and M. Göken, Acta Mater. 57, 1281 (2009).

    Article  Google Scholar 

  43. W.D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 (1998).

    Article  MATH  Google Scholar 

  44. Y.Y. Lim and M.M. Chaudhri, Philos. Mag. A 79, 2979 (1999).

    Article  Google Scholar 

  45. Y.V. Milman, A. Golubenko, and S. Dub, Acta Mater. 59, 7480 (2011).

    Article  Google Scholar 

  46. J. Nye, Acta Metall. 1, 153 (1953).

    Article  Google Scholar 

  47. M. Ashby, Philos. Mag. 21, 399 (1970).

    Article  Google Scholar 

  48. A. Arsenlis and D. Parks, Acta Mater. 47, 1597 (1999).

    Article  Google Scholar 

  49. H. Gao and Y. Huang, Scripta Mater. 48, 113 (2003).

    Article  Google Scholar 

  50. A. Elmustafa and D. Stone, Mater. Sci. Eng. A 358, 1 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundeep Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mridha, S., Das, S., Aouadi, S. et al. Nanomechanical Behavior of CoCrFeMnNi High-Entropy Alloy. JOM 67, 2296–2302 (2015). https://doi.org/10.1007/s11837-015-1566-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1566-6

Keywords

Navigation