Skip to main content
Log in

Mechanical Behavior of Electrospun Palmfruit Bunch Reinforced Polylactide Composite Fibers

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, the mechanical characteristics of electrospun palm fruit bunch reinforced poly lactic acid (PLA) nanofiber composites using treated and untreated filler was examined. Poly lactic acid–palm fruit bunch–dichloromethane blends were electrospun by varying the concentration of the palm fruit bunch between 0 wt.% and 8 wt.%. A constant voltage of 26 kV was applied, the tip-to-collector distance was maintained at 27.5 cm and PLA-palm fruit bunch-dichloromethane (DCM) concentration of 12.5% (w/v) was used. The results revealed that the presence of untreated palm fruit bunch fillers in the electrospun PLA matrix significantly reduces the average diameters of the fibers, causing the formation of beads. As a result there are reductions in tensile strengths of the fibers. The presence of treated palm fruit bunch fillers in the electrospun PLA matrix increases the average diameters of the fibers with improvements in the mechanical properties. The optimal mechanical responses were obtained at 3 wt.% of the treated palm fruit bunch fillers in the PLA matrix. However, increase in the palm fruit fillers (treated and untreated) in the PLA matrix promoted the formation of beads in the nanofiber composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Formhals, US patent No. 1,975,504 (1934).

  2. J. Jeun, Y. Kim, Y. Lim, J. Choi, C. Jung, P. Kang, and Y. Nho, J. Ind. Eng. Chem. 13, 592 (2007).

    Google Scholar 

  3. U. Tamer, I. Cianga, L. Cianga, F. Besenbacher, and Y. Yagci, Mater. Lett. 63, 1638 (2009).

    Article  Google Scholar 

  4. D.H. Reneker and I. Chun, Nanotechnology 7, 216 (1996).

    Article  Google Scholar 

  5. M. Chowdhury and G. Stylios, Intl. J. Basic Appl. Sci. 10, 70 (2010).

    Google Scholar 

  6. F. Li, H.M. Cheng, S. Bai, G. Su, and M.S. Dresselhaus, Appl. Phys. Lett. 77, 3161 (2000).

    Article  Google Scholar 

  7. G. Fu, H. Wang, and X. Li, Recent Patents Nanotechnol. 3, 21 (2009).

    Article  Google Scholar 

  8. J. Zeng, L. Yang, Q. Liang, X. Zhang, H. Guan, X. Xu, X. Chen, and X. Jing, J. Control Release 105, 43 (2005).

    Article  Google Scholar 

  9. E.R. Kenawy, F.I. Abdel-Hay, M.H. El-Newehy, and G.E. Wnek, Mater. Chem. Phys. 113, 296 (2009).

    Article  Google Scholar 

  10. S.D. McCullen, L.S. Kelly, R.S. Derrick, A.R. Wesley, A.M. Nancy, I.C. Laura, and E.G. Russell, J. Appl. Polym. Sci. 105, 1668 (2007).

    Article  Google Scholar 

  11. K. Kim, Y.K. Luu, C. Chang, D. Fang, B.S. Hsiao, B. Chu, and M. Hadjiargyrou, J. Control Release 98, 47 (2004).

    Article  Google Scholar 

  12. A. Matuseviciute, A. Butkiene, S. Stanys, and E. Adomaviciute, Fibres Text. East. Eur. 20, 3, 21 (2012).

  13. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, and P.N. Provencio, Science 282, 1105 (1998).

    Article  Google Scholar 

  14. M.S. Dresselhaus, G. Dresselhaus, and P.C. Ecklund, Science of Fullerenes and Carbon Nanotubes (New York: Academic, 1996).

    Google Scholar 

  15. Y.Y. Leslie and J.R. Friend, J. Exp. Nanosci. 1, 177 (2006).

    Article  Google Scholar 

  16. N.Z. Noor Azman, S.A. Siddiqui, H.J. Haroosh, H.M.M. Albetran, B. Johannessen, Y. Dong, and I.M. Low, J. Synchrotron Rad. 20, 741 (2013).

  17. H.S. Chien and C. Wang, Fibres Text. East. Eur. 21, 1, 72 (2013).

  18. G. Ahmet, Electrospinning of Polystyrene/Butyl Rubber Blends: A Parametric Study (Chemical Engineering Department, Middle East Technical University, 2008).

  19. T. Jarusuwannapoom, W. Hangrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, and P. Supaphol, Eur. Polym. J. 41, 409 (2005).

    Article  Google Scholar 

  20. K. Pankaj, Effect of Collector on Electrospinning to Fabricate Aligned Nanofiber (Rourkela: B.S Department of Biotechnology & Medical Engineering National Institute of Technology, 2012).

  21. S. Arshad, H. Azman, N.A. Farid, and A.B. Aznizam, Soc. Plast. Eng. J. (2010). doi:10.1002/spepro.003052.

    Google Scholar 

  22. A.A. Hammajam, Z.N. Ismarrubie, and M.S. Sapuan, J. Miner. Mater. Charact. Eng. 1, 271 (2013).

    Google Scholar 

  23. E.I. Akpan, S.O. Adeosun, G.I. Lawal, S.A. Balogun, and X.D. Chen, Int. J. Chem. Nucl. Metall. Mater. Eng. 8, 223 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Akpan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeosun, S.O., Akpan, E.I., Gbenebor, O.P. et al. Mechanical Behavior of Electrospun Palmfruit Bunch Reinforced Polylactide Composite Fibers. JOM 68, 265–270 (2016). https://doi.org/10.1007/s11837-015-1565-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1565-7

Keywords

Navigation