Skip to main content
Log in

Spinodal Decomposition in Multilayered Fe-Cr System: Kinetic Stasis and Wave Instability

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Used as fuel cladding in the Gen IV fission reactors, ODS steels would be held at temperatures in the range of 350°C to 600°C for several months. Under these conditions, spinodal decomposition is likely to occur in the matrix, resulting in an increase of material brittleness. In this study, thin films consisting of a modulated composition in Fe and in Cr in a given direction have been elaborated. The time evolution of the composition profiles during aging at 500°C has been characterized by atom probe tomography, indicating an apparent kinetic stasis of the initial microstructure. A computer model has been developed on the basis of the Cahn–Hilliard theory of spinodal decomposition, associated with the mobility form proposed by Martin (1990). We make the assumption that the initial profile is very close to the amplitude-dependent critical wavelength. Our calculations show that the thin film is unstable relative to wavelength modulations, resulting in the observed kinetic stasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Danoix and P. Auger, Mater. Charact. 44, 177 (2000).

    Article  Google Scholar 

  2. P. Hedström, F. Huyan, J. Zhou, S. Wessman, M. Thuvander, and J. Odqvist, Mater. Sci. Eng. A 574, 123 (2013).

    Article  Google Scholar 

  3. P. Kyung-Ho, J.C. LaSalles, and L.H. Schwartz, Acta Metall. 34, 1853 (1986).

    Article  Google Scholar 

  4. F. Bley, Acta Metall 140, 1505 (1992).

    Article  Google Scholar 

  5. M. Furusaka, Y. Ishikawa, S. Yamaguchi, and Y. Fujino, J. Phys. Soc. Jpn. 55, 2253 (1986).

    Article  Google Scholar 

  6. H. Kuwano, Trans. Jpn. Inst. Metall. 26, 730 (1985).

    Article  Google Scholar 

  7. H. Kuwano, Trans. Jpn. Inst. Metall. 26, 491 (1985).

    Google Scholar 

  8. H. Kuwano, Trans. Jpn. Inst. Metall. 26, 721 (1985).

    Article  Google Scholar 

  9. S. Novy, P. Pareige, and C. Pareige, J. Nucl. Mater. 384, 96 (2009).

    Article  Google Scholar 

  10. T. Tsakalakos, Thin Solid Films 86, 79 (1981).

    Article  Google Scholar 

  11. T. Tsakalakos, Scripta Metall. 15, 255 (1981).

    Article  Google Scholar 

  12. J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28, 258 (1958).

    Article  Google Scholar 

  13. J.W. Cahn, Acta Metall. 9, 795 (1961).

    Article  Google Scholar 

  14. H.E. Cook, D. de Fontaine, and J.E. Hilliard, Acta Metall. 17, 765 (1969).

    Article  Google Scholar 

  15. J.S. Langer, M. Bar-on, and D. Miller, Phys. Rev. A 11, 1417 (1975).

    Article  Google Scholar 

  16. G. Martin, Phys. Rev. B 41, 2279 (1990).

    Article  Google Scholar 

  17. P. Maugis and G. Martin, Phys. Rev. B 49, 11580 (1994).

    Article  Google Scholar 

  18. R. Braun and M. Feller-Kniepmeier, Phys. Stat. Sol. 90, 553 (1985).

    Article  Google Scholar 

  19. B. Jönsson, ISIJ Int. 35, 1415 (1995).

    Article  Google Scholar 

  20. W.L. Bragg and E.J. Williams, Proc. R. Soc. A 145, 699 (1934).

    Article  Google Scholar 

  21. M. Nastar, Phys. Rev. B 90, 144101 (2014).

    Article  Google Scholar 

  22. D.W. Heermann, Phys. Rev. Lett. 52, 1126 (1984).

    Article  Google Scholar 

  23. W. Xiong, M. Selleby, Q. Chen, J. Odqvist, and Y. Du, Crit. Rev. Solid State Mater. Sci. 35, 125 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

Maxime Bertoglio and Marion Descoins are acknowledged for technical support. The authors wish to thank M. Nastar and F. Soisson for fruitful discussions. This work was supported by the joint program CPR ODISSEE funded by AREVA, CEA, CNRS, EDF, and Mécachrome under contract 070551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Maugis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maugis, P., Colignon, Y., Mangelinck, D. et al. Spinodal Decomposition in Multilayered Fe-Cr System: Kinetic Stasis and Wave Instability. JOM 67, 2202–2207 (2015). https://doi.org/10.1007/s11837-015-1558-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1558-6

Keywords

Navigation