Skip to main content
Log in

Natural Ceramic Nanotube Substrates for Surface-Enhanced Raman Spectroscopy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Natural halloysite clay nanotubes are cheap and available in large quantities, thus seem superior to the other nanotube-based materials. Halloysite nanotubes are used to form structured substrates for surface-enhanced Raman scattering (SERS). Specifically, layered aluminum-halloysite- (noble) metal substrates were prepared by deposition of halloysite nanotubes on aluminum foil, followed by thin metal film coatings via vacuum evaporation. The composite substrates required no capping agent on the metal surface and thus avoided background peaks in the Raman spectra, making them well suited for SERS studies. Gold-, silver-, and copper-coated substrates exhibited SERS for p-mercaptobenzoic acid, whereas uncoated and platinum-coated substrates did not. The SERS enhancement factors for the gold-, silver-, and copper-coated substrates were, by a conservative estimate, 1.4 × 105, 3.5 × 104, and 3.5 × 103, respectively. Interestingly enough, the SERS enhancement factors of substrates decrease in a row: Au > Ag > Cu, which differ from those for the corresponding metal nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C. Yu, M. Sosnowski, N.M. Ravindra, and Z. Iqbal, JOM 66, 608 (2014).

    Article  Google Scholar 

  2. D.W.H. Fam, A. Palaniappan, A.I.Y. Tok, B. Liedberg, and S.M. Moochhala, Sens. Actuators, B 157, 1 (2011).

    Article  Google Scholar 

  3. J.T. Korhonen, P. Hiekkataipale, J. Malm, M. Karppinen, O. Ikkala, and R.H.A. Ras, ACS Nano 5, 1967 (2011).

    Article  Google Scholar 

  4. Y.-C. Chen, R.J. Young, J.V. Macpherson, and N.R. Wilson, J. Raman Spectrosc. 42, 1255 (2011).

    Article  Google Scholar 

  5. X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, Adv. Funct. Mater. 20, 2815 (2010).

    Article  Google Scholar 

  6. P. Leyton, J.S. Gómez-Jeria, S. Sanchez-Cortes, C. Domingo, and M. Campos-Vallette, J. Phys. Chem. B 110, 6470 (2006).

    Article  Google Scholar 

  7. M. Sanles-Sobrido, L. Rodríguez-Lorenzo, S. Lorenzo-Abalde, A. González-Fernández, M.A. Correa-Duarte, R.A. Alvarez-Puebla, and L.M. Liz-Marzán, Nanoscale 1, 153 (2009).

    Article  Google Scholar 

  8. R. Narayan, JOM 64, 505 (2012).

    Article  Google Scholar 

  9. X. Wang, C. Wang, L. Cheng, S.-T. Lee, and Z. Liu, J. Am. Chem. Soc. 134, 7414 (2012).

    Article  Google Scholar 

  10. A. Roguska, A. Kudelski, M. Pisarek, M. Opara, and M. Janik-Czachor, Appl. Surf. Sci. 257, 8182 (2011).

    Article  Google Scholar 

  11. J. Lao and D. Moldovan, JOM 65, 168 (2013).

    Article  Google Scholar 

  12. Z. Jiang, Q. Zhang, C. Zong, B.-J. Liu, B. Ren, Z. Xie, and L. Zheng, J. Mater. Chem. 22, 18192 (2012).

    Article  Google Scholar 

  13. Y. Lvov and E. Abdullayev, Prog. Polym. Sci. 38, 1690 (2013).

    Article  Google Scholar 

  14. M. Zou, M. Du, M. Zhang, T. Yang, H. Zhu, P. Wang, and S. Bao, Mater. Res. Bull. 61, 375 (2015).

    Article  Google Scholar 

  15. E. Abdullayev, K. Sakakibara, K. Okamoto, W. Wei, K. Ariga, and Y. Lvov, ACS Appl. Mater. Interfaces 3, 4040 (2011).

    Article  Google Scholar 

  16. C. Li, X. Li, X. Duan, G. Li, and J. Wang, J. Colloid Interface Sci. 436, 70 (2014).

    Article  Google Scholar 

  17. M. Zieba, J.L. Hueso, M. Arruebo, G. Martínez, and J. Santamaría, New J. Chem. 38, 2037 (2014).

    Article  Google Scholar 

  18. H. Zhu, M.L. Du, M.L. Zou, C.S. Xu, and Y.Q. Fu, Dalton Trans. 41, 10465 (2012).

    Article  Google Scholar 

  19. V. Vinokurov, A. Berberov, D. Afonin, H. Borzaev, E. Ivanov, P. Gushchin, and Y. Lvov, IOP Conf. Ser. Mater. Sci. Eng. 64, 012017 (2014).

    Article  Google Scholar 

  20. H. Guo, L. Ding, and Y. Mo, J. Mol. Struct. 991, 103 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Ministry of Education and Science of the Russian Federation (Target funding, Project 16.1812.2014/K). The authors are grateful to Kumiko Shimogami (Edanz editing) for language help.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei A. Novikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinokurov, V.A., Kopitsyn, D.S., Kotelev, M.S. et al. Natural Ceramic Nanotube Substrates for Surface-Enhanced Raman Spectroscopy. JOM 67, 2877–2880 (2015). https://doi.org/10.1007/s11837-015-1494-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1494-5

Keywords

Navigation