Skip to main content
Log in

Box–Behnken Design Application to Study Leaching of Pyrolusite from Manganese Mining Residue Using Olive Mill Wastewater as Reductant

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The leaching capacity of olive mill wastewater (OMW) for pyrolusite mine tailings (MnO2) was evaluated using the Box–Behnken experimental design of response surface methodology. The selected test parameters include the concentration of sulfuric acid, the OMW dosage chemical oxygen demand (COD), the solid/liquid ratio S/L, and particle size. It was determined that the MnO2 dissolution increased with an increase in the sulfuric acid concentration and the OMW dosage, and with a decrease in the solid/liquid ratio. The particle size does not have significant influence on the manganese recovery. A quadratic polynomial model has been developed to predict the amount of manganese extraction from pyrolusite for other operating conditions that were not directly tested. The leaching ability was evaluated based on manganese recovery (Mn%) and the removal capability of chemical oxygen demand (COD%). The predicted values for the responses agreed well with experimental values; R 2 (correlation coefficient) values for Mn% and COD% were 0.9602 and 0.9687, respectively. Within the design space, the optimum conditions for the lixiviation of MnO2 in terms of manganese recovery and COD removal were established and include [H2SO4] of 3 mol L−1, OMW in range of 23 g L−1 to 25 g L−1 COD, and pulp density in range of 90 g L−1 to 100 g L−1. Under these conditions, the response values generated by the model are Mn% ∼49% and COD% >40%. These values show good agreement with those obtained in the validation test. This study has demonstrated that it is possible to use the olive mill wastewater as a reductant agent to recover manganese from a pyrolusite mining residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The riffle splitter is the most common mechanical method for sample homogenization and/or sample size reduction.

  2. P value is defined as a probability, used in order to quantify the idea of statistical significance of evidence.

References

  1. C. Abbruzzese, M.Y. Duarte, B. Paponetti, and L. Toro, Miner. Eng. 3, 307 (1990).

    Article  Google Scholar 

  2. S.C. Das, P.K. Sahoo, and P.K. Rao, Hydrometallurgy 8, 35 (1982).

    Article  Google Scholar 

  3. P.K. Sahoo and K.S. Rao, Int. J. Miner. Process. 25, 147 (1989).

    Article  Google Scholar 

  4. D. Hariprasad, B. Dash, M.K. Ghosh, and S. Anand, Miner. Eng. 20, 1293 (2007).

    Article  Google Scholar 

  5. N. Demirkiran, A. Ekmekyapar, C. Asin, A. Künkül, A. Baysar, and K. Ceylan, Russian J. Non-Ferrous Met. 53, 211 (2012).

    Article  Google Scholar 

  6. S. Hai-feng, L. Huai-kun, W. Fan, L. Xiao-yan, and W. Yan-xuan, Chin. J. Chem. Eng. 18, 730 (2010).

    Article  Google Scholar 

  7. S. Hai-feng, W. Yan-xuan, W. Fan, L. Xuan-hai, and T. Zhang-fa, Miner. Eng. 22, 207 (2009).

    Article  Google Scholar 

  8. P.N. Sahoo, P.K. Naik, and S.C. Das, Hydrometallurgy 62, 157 (2001).

    Article  Google Scholar 

  9. C. Abbruzzese, Hydrometallurgy 25, 85 (1990).

    Article  Google Scholar 

  10. P.K. Naik, L.B. Sukla, and S.C. Das, Hydrometallurgy 54, 217 (2000).

    Article  Google Scholar 

  11. A. Alaoui, K. El Kacemi, S. Kitane, and K. El Ass, Int. J. Eng. Res. Tech. 2, 2568 (2013).

    Google Scholar 

  12. T. Jiang, Y.B. Yang, Z.C. Huang, and G.Z. Qiu, Hydrometallurgy 69, 177 (2003).

    Article  Google Scholar 

  13. Y. Darmane, M. Cherkaoui, S. Kitane, A. Alaoui, A. Sebban, and M. Ebn Touhami, Hydrometallurgy 92, 73 (2008).

    Article  Google Scholar 

  14. H.F. Su, Y.X. Wen, F. Wang, Y.Y. Sun, and Z.F. Tong, Hydrometallurgy 93, 136 (2008).

    Article  Google Scholar 

  15. T.A. Lasheen, M.N. El-Hazek, A.S. Heial, and W. El-Nagar, Int. J. Min. Process. 92, 109 (2009).

    Article  Google Scholar 

  16. H.F. Su, Y.X. Wen, F. Wang, Y.Y. Sun, and Z.F. Tong, Miner. Eng. 22, 207 (2009).

    Article  Google Scholar 

  17. Z. Cheng, G.C. Zhu, and Y. Zhao, Hydrometallurgy 96, 176 (2009).

    Article  Google Scholar 

  18. X.K. Tian, X.X. Wen, C. Yang, Y.J. Liang, Z.B. Pi, and Y.X. Wang, Hydrometallurgy 100, 157 (2010).

    Article  Google Scholar 

  19. M. Niaounakis and C.P. Halvadakis, Olive-Mill Waste Management, 2nd ed. (New York: Springer, 2006).

    Google Scholar 

  20. J. Gutzmer, N.J. Beukes, M. Rhalmi, and J. Mukhopadhyay, Econ. Geol. 101, 385 (2006).

    Article  Google Scholar 

  21. E. Jalilnejad, A. Mogharei, and F. Vahabzadeh, Environ. Technol. 32, 1085 (2011).

    Article  Google Scholar 

  22. J.D. Box, Water Res. 17, 511 (1983).

    Article  Google Scholar 

  23. F.E. Ergul, S. Sargin, G. Ongen, and F.V. Sukan, Int. Biodeterior. Biodegrad. 63, 1 (2009).

    Article  Google Scholar 

  24. American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 20th ed. (Washington, DC: American Public Health Association/American Water Works Association/Water Environment Federation, 1998).

    Google Scholar 

  25. M. Trifoni, L. Toro, and F. VegliÒ, Hydrometallurgy 59, 1 (2001).

    Article  Google Scholar 

  26. G.E.P. Box, W.G. Hunter, and J.S. Hunter, Statistics for Experimenters (New York: Wiley, 1978).

    MATH  Google Scholar 

  27. A.S. Souza, N.L. dos Santos Walter, and L.C. Ferreira Sérgio, Spectrochim. Acta, Part B 609, 737 (2005).

    Article  Google Scholar 

  28. G. Annadurai, S.S. Sung, and D.L. Lee, Separat. Sci. Tech. 39, 19 (2004).

    Article  Google Scholar 

  29. D.P. Haaland, Experimental Design in Biotechnology (New York: Marcel Dekker Inc, 1989).

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the Laboratory of Electrochemistry and Analytical Chemistry, Mohammed-V University, Faculty of Sciences Rabat, Agdal, Morocco, for supporting and approving this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Alaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaoui, A., El Kacemi, K., El Ass, K. et al. Box–Behnken Design Application to Study Leaching of Pyrolusite from Manganese Mining Residue Using Olive Mill Wastewater as Reductant. JOM 67, 1086–1095 (2015). https://doi.org/10.1007/s11837-015-1390-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1390-z

Keywords

Navigation