Skip to main content
Log in

Compact Process for the Preparation of Microfine Spherical High-Niobium-Containing TiAl Alloy Powders

  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.W. Kim and S.L. Kim, Intermetallics 53, 92 (2014).

    Article  Google Scholar 

  2. R. Pflumm, et al., Intermetallics 53, 45 (2014).

    Article  Google Scholar 

  3. S. Shu, et al., J. Alloys Compd. 617, 302 (2014).

    Article  Google Scholar 

  4. Z.C. Liu, et al., Intermetallics 10, 653 (2002).

    Article  Google Scholar 

  5. L.L. Xiang, et al., Intermetallics 27, 6 (2012).

    Article  Google Scholar 

  6. G.E. Bean, M.S. Kesler, and M.V. Manuel, J. Alloys Compd. 613, 351 (2014).

    Article  Google Scholar 

  7. S. Tian, et al., Mater. Sci. Eng. A 614, 338 (2014).

    Article  Google Scholar 

  8. L.L. Zhao, et al., Intermetallics 18, 1586 (2010).

    Article  Google Scholar 

  9. S.H. Khajavi, J. Partanen, and J. Holmström, Comput. Ind. 65, 50 (2014).

    Article  Google Scholar 

  10. F.P.W. Melchels, et al., Prog. Polym. Sci. 37, 1079 (2012).

    Article  Google Scholar 

  11. S. Mellor, L. Hao, and D. Zhang, Int. J. Prod. Econ. 149, 194 (2014).

    Article  Google Scholar 

  12. D.T. Chou, et al., Acta Biomater. 9, 8593 (2013).

    Article  Google Scholar 

  13. S. Palanivel, et al., Mater. Des. 65, 934 (2015).

    Article  Google Scholar 

  14. H.P. Shao, et al., Int. J. Miner. Metall. Mater. 20, 1076 (2013).

    Article  Google Scholar 

  15. H.M. Zhang, et al., Mater. Sci. Eng. A 526, 31 (2009).

    Article  Google Scholar 

  16. R. Gerling, et al., Mater. Sci. Eng. A 252, 239 (1998).

    Article  Google Scholar 

  17. G. Wegmann, R. Gerling, and F.P. Schimansky, Acta Mater. 51, 741 (2003).

    Article  Google Scholar 

  18. M.R. Farhang, A.R. Kamali, and M. Nazarian-Samani, Mater. Sci. Eng. B 168, 136 (2010).

    Article  Google Scholar 

  19. N. Forouzanmehr, F. Karimzadeh, and M.H. Enayati, J. Alloys Compd. 471, 93 (2009).

    Article  Google Scholar 

  20. S. Kumaran, et al., Powder Technol. 185, 124 (2008).

    Article  Google Scholar 

  21. F. Bourg, et al., Sol. Energy Mater. Sol. Cell 72, 361 (2002).

    Article  Google Scholar 

  22. R. Ye, P. Proulx, and M.I. Boulos, Int. J. Heat Mass Trans. 42, 1585 (1999).

    Article  MATH  Google Scholar 

  23. M.M. Hossain, et al., Chem. Eng. J. 150, 561 (2009).

    Article  Google Scholar 

  24. Y.W. Sheng, et al., Proc. Eng. 36, 299 (2012).

    Article  Google Scholar 

  25. S. Kumar, et al., Mater. Sci. Eng. A 486, 287 (2008).

    Article  Google Scholar 

  26. Z. Károly, J. Szépvölgyi, and Z. Farkas, Powder Technol. 110, 169 (2000).

    Article  Google Scholar 

  27. V. Chaturvedi, et al., Ceram. Int. 40, 8273 (2014).

    Article  Google Scholar 

  28. X. Lu, L.P. Zhu, and X.H. Qu, Key Eng. Mater. 520, 111 (2012).

    Article  Google Scholar 

  29. G. Soucy, et al., Mater. Sci. Eng. A 300, 226 (2001).

    Article  Google Scholar 

  30. Y.H. Wang, et al., Trans. Nonferr. Met. Soc. 16, 853 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China (No. 51204015) and Aeronautical Science Foundation of China (No. 2013ZE74004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, J.B., Lu, X., Liu, C.C. et al. Compact Process for the Preparation of Microfine Spherical High-Niobium-Containing TiAl Alloy Powders. JOM 67, 573–579 (2015). https://doi.org/10.1007/s11837-015-1303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1303-1

Keywords

Navigation