Skip to main content
Log in

Corrosion Fatigue Behavior of 316LN SS in Acidified Sodium Chloride Solution at Applied Potential

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The influence of acidified 1 M NaCl solution by addition of 2 ml/L of HCl on the cyclic plastic deformation of AISI Type 316LN SS containing 0.07  wt.% and 0.22 wt.% N was investigated as a function of the applied potentials. The corrosion fatigue (CF) behavior of stainless steel (SS) was explained vis-a-vis the dislocation behavior, the propensity to form microcracks, and the evolution of the current transients based on the studies carried out at both room-temperature and boiling conditions. CF experiments were conducted using round tensile specimens at a stress ratio of 0.5 and a frequency of 0.1 Hz. Two different kinds of damage mechanisms were observed (I) the damage mechanism in the stable–passive state was correlated with the localization of the anodic dissolution due to a depassivation–repassivation process, whereas (II) the cyclic stress induced pitting corrosion in the metastable pitting state, which resulted in formation of microcracks. The study of the microcracking process and its evolution is a key to the physical mechanism by which the fatigue life of stainless steels would be affected in an aqueous corrosive solution under the applied potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. B. Raj and U.K. Mudali, High Nitrogen Stainless Steels (New Delhi: Narosa Publishing House, 2004), p. 1.

    Google Scholar 

  2. U.K. Mudali and S. Ningshen, Corrosion Properties of Nitrogen Bearing Stainless Steels, High Nitrogen Steels and SS (New Delhi: Narosa Publishing House, 2004), p. 133.

    Google Scholar 

  3. U.K. Mudali, R.K. Dayal, J.B. Gnanamoorthy, and P. Rodriguez, Mater. Trans. Jpn. Inst. Met. 37, 1568 (1996).

    Google Scholar 

  4. A. Poonguzhali, M.G. Pujar, and U.K. Mudali, J. Mater. Eng. Perform. 22, 1170 (2013).

    Article  Google Scholar 

  5. S.L. Mannan, S.C. Chetal, B. Raj, and S.B. Bhoje (Paper presented at the Proceedings of the Seminar on Materials R & D for PFBR, Kalpakkam, India, 2003).

  6. R. Ebara (Paper presented at the Proceedings of the JSCE Materials and Environments, 1985), pp. 221–224.

  7. R. Ebara, Proc. Eng. 2, 1297 (2010).

    Article  Google Scholar 

  8. B. Baroux, Further Insights on the Pitting Corrosion of Stainless Steels. Corrosion Mechanisms in Theory and Practice, 2nd ed., ed. P. Marcus (New York: Marcel Dekker, 2002), p. 311.

  9. Z. Smialowska-Szklarska, Pitting Corrosion of Metals (Houston, TX: NACE International, 1986), p. 430.

    Google Scholar 

  10. H.H. Strehblow, Mechanisms of Pitting Corrosion, Corrosion Mechanisms in Theory and Practice, ed., P. Marcus and J. Ouder (New York: Marcel Dekker, 2002), p. 243.

  11. S. Ishihara, Z.Y. Nan, A.J. McEvily, T. Goshima, and S. Sunada, Int. J. Fatigue 30, 1659 (2008).

    Article  Google Scholar 

  12. R. Ebara, Mater. Sci. Eng. A 468–470, 109 (2007).

    Article  Google Scholar 

  13. H.M. Shalaby, J.A. Begley, and D.D. MacDonald, Corrosion 52, 262 (1996).

    Article  Google Scholar 

  14. J. Xie, A.T. Alpas, and D.O. Northwood, Mater. Charact. 48, 271 (2002).

    Article  Google Scholar 

  15. E. Rezig, P.E. Irving, and M.J. Robinson, Proc. Eng. 2, 387 (2010).

    Article  Google Scholar 

  16. T. Magnin and I. Coudreuse, Acta Metall. 35, 2105 (1987).

    Article  Google Scholar 

  17. I. Olefjord and L. Wegrelius, Corros. Sci. 38, 1203 (1996).

    Article  Google Scholar 

  18. Y. Lu, R. Bandy, C.R. Clayton, and R.C. Newman, J. Electrochem. Soc. 130, 1774 (1983).

    Article  Google Scholar 

  19. G. Okamoto (Paper presented at the Proceedings of the Conference on Passivity and Its Breakdown on Iron and Iron Base Alloys, Houston, TX, 1976) pp. 106–109.

  20. A.T. Fromhold, Oxides and Oxide Films, vol. 4, ed. J.W. Diggle (New York: Marcel Dekker, 1976), pp. 1–271.

  21. J. Bessone (Ph.D. Thesis, University of Manchester Institute of Science and Technology, 1983).

  22. C. Escriva-Cerdana, E. Blasco-Tamarita, and D.M. Garcia-Garciaa, Chem. Eng. Trans. 32, 1717 (2013).

    Google Scholar 

  23. L.L. Shreir, R.A. Jarman, and G.T. Burstein, Corrosion (New York: Wiley, 2000).

    Google Scholar 

  24. B.R. Tzaneva, Bulgarian Chem. Commun. 46, 378 (2014).

    Google Scholar 

  25. H.Y. Ha, H. Jang, H.S. Kwon, and S. Kim, Corros. Sci. 51, 48 (2009).

    Article  Google Scholar 

  26. U.K. Mudali, B. Reynders, and M. Stratmann, Corros. Sci. 41, 179 (1999).

    Article  Google Scholar 

  27. Y. Fu, X. Wu, E.-H. Han, W. Ke, K. Yang, and Z. Jiang, Electrochim. Acta 54, 4005 (2009).

    Article  Google Scholar 

  28. M. Kumagai, S.T. Myung, S. Kuwata, R. Aaishi, Y. Katada, and H. Yashiro, Electrochim. Acta 54, 1127 (2009).

    Article  Google Scholar 

  29. C. Trépanier and A.R. Pelton (Paper presented at the Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Kurhaus Baden-Baden, Baden-Baden, Germany, 3–7 October 2004).

  30. R.F.A. Jargelius-Pettersson, Corros. Sci. 41, 1639 (1999).

    Article  Google Scholar 

  31. R.C. Newman and W.R. Whitney, Corrosion 57, 1030 (2001).

    Article  Google Scholar 

  32. Z. Begum, A. Poonguzhali, R. Paul, H. Shaikh, R.V. Subba Rao, A.K. Patil, and R.K. Dayal, Corros. Sci. 53, 1424 (2011).

    Article  Google Scholar 

  33. U. Kamachi Mudali and Y. Katada, Electrochim. Acta 46, 3735 (2001).

    Article  Google Scholar 

  34. Z.S. Tong, B.X. Feng, H.Q. Li, and Y. Shi, Corrosion 41, 121 (1985).

    Article  Google Scholar 

  35. J.B. Duh, W.T. Tsai, J.T. Lee, and H. Chang, Corrosion 46, 983 (1990).

    Article  Google Scholar 

  36. S. Degallaix, J.I. Dickson, and J. Foct, Proceedings of the First International Conference on High Nitrogen Steels “HNS 88,” eds. J. Foct and A. Hendry (London, U.K.: The Institute of Metals, 1989), p. 380.

  37. J.W. Simmons, J Mater. Sci. Eng. A A207, 159 (1996).

    Article  Google Scholar 

  38. R.M. Pelloux, R.E. Stoltz, and J.A. Moskovitz, Mater. Sci. Eng. 25, 193 (1976).

    Article  Google Scholar 

  39. K. Hladky and J.L. Dawson, Corros. Sci. 22, 231 (1982).

    Article  Google Scholar 

  40. T. Anita, M.G. Pujar, H. Shaikh, R.K. Dayal, and H.S. Khatak, Corros. Sci. 48, 2689 (2006).

    Article  Google Scholar 

  41. C. Amzallag, B. Mayonobe, and P. Rabbe, Electrochemical Corrosion Testing, ASTM STP/727, eds. F. Mansfeld and U. Bertocci (West Conshohocken, PA: ASTM International, 1981), pp. 69–83.

  42. R. Ebara, Eng. Fail Anal. 13, 516 (2006).

    Article  Google Scholar 

  43. G. Greenfield, Corrosion Fatigue: Chemistry, Mechanics and Microstructure (Houston, TX: NACE International, 1972), p. 133.

    Google Scholar 

  44. M.G. Pujar, U.K. Mudali, and S. Sekar Singh, Corros. Sci. 53, 4178–4186 (2011).

    Article  Google Scholar 

  45. S.A. Shiplov, Environmentally Induced Cracking of Materials, ed. S.A. Shiplov, R.H. Jones, J.M. Olive, and R.B. Rebak (New York: Elsevier Science Ltd., 2008).

  46. P.S. Pao, S.J. Gill, and C.R. Feng, Scripta Mater. 43, 391 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Pujar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poonguzhali, A., Pujar, M.G., Mallika, C. et al. Corrosion Fatigue Behavior of 316LN SS in Acidified Sodium Chloride Solution at Applied Potential. JOM 67, 1162–1175 (2015). https://doi.org/10.1007/s11837-015-1292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1292-0

Keywords

Navigation