Skip to main content
Log in

Energy Saving Through the Control of Initial Solidification During Continuous Casting

  • Published:
JOM Aims and scope Submit manuscript

Abstract

With the development of advanced continuous-casting technology, saving energy and reducing greenhouse gas emissions are crucial for its future development. Controlling the initial solidification of molten steel in the mold to improve the quality of casting products would tend to minimize extra postcast treatment like scarfing, etc., which leads to a large amount of energy savings in the continuous-casting process through the minimization of the extra labor and energy consumption. In this article, factors such as mold flux, mold oscillation, cooling potential conditions, and fluid flow in the vicinity of meniscus that correlate with the molten steel initial solidification are discussed with the aim to provide strategy and guidelines for the optimization of molten steel solidification and energy savings in continuous casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Sengupta, B.G. Thomas, and M.A. Wells, Metall. Mater. Trans. A 36, 187 (2005).

    Article  Google Scholar 

  2. S. Mazumdar and S.K. Ray, Sadhana 26, 179 (2001).

    Article  Google Scholar 

  3. H. Okumura, Nippon Steel Tech. Rep. 61, 9 (1994).

    Google Scholar 

  4. J.F. Evans and N.P. Fitzpatrick, JOM 33 (11), 40 (1981).

    Article  Google Scholar 

  5. N.A. EI-Mahallawy and M.A. Tata, JOM 37 (9), 42 (1985).

  6. A. Chatteree and S. Chandra, Sadhana 26, 163 (2001).

    Article  Google Scholar 

  7. J.K. Park, B.G. Thomas, I.V. Samarasekera, and U.S. Yoon, Metall. Mater. Trans. B 33, 425 (2002).

    Article  Google Scholar 

  8. N. Zapuskalov, ISIJ Int. 43, 1115 (2003).

    Article  Google Scholar 

  9. R. Nagy and D. Senk, Int. J. Min. Metall. Mater. 19, 391 (2012).

    Article  Google Scholar 

  10. G.S. Nikitin, M.N. Shulyak, N.E. Zhukevich-Stosha, and M.P. Galkin, Metallurgist 52, 86 (2008).

    Article  Google Scholar 

  11. P. Echigo, H. Yoshida, and T. Mochizuki, JSME Int. J. 31, 545 (1988).

    Google Scholar 

  12. O. Tsubakihara, Trans. ISIJ 27, 81 (1987).

    Article  Google Scholar 

  13. E. Takeuchi and J.K. Brimacombe, Metall. Trans. B 15, 493 (1984).

    Article  Google Scholar 

  14. J. Sengupta, H.J. Shin, B.G. Thomas, and S.H. Kim, Acta Mater. 54, 1165 (2006).

    Article  Google Scholar 

  15. P.E. Ramirez-Lopez, K.C. Mills, P.D. Lee, and B. Santillana, Metall. Mater. Trans. B 43, 109 (2012).

    Article  Google Scholar 

  16. S. Harada, S. Tanaka, H. Misumi, S. Mizoguchi, and H. Horiguchi, ISIJ Int. 30, 310 (1990).

    Article  Google Scholar 

  17. J. Konishi, M. Militzer, J.K. Brimacombe, and I.V. Samarasekera, Metall. Mater. Trans. B 33, 413 (2002).

    Article  Google Scholar 

  18. G. Krauss, Metall. Mater. Trans. B 34, 781 (2003).

    Article  Google Scholar 

  19. E. Takeuchi and J.K. Brimacombe, Metall. Mater. Trans. B 16, 605 (1985).

    Article  Google Scholar 

  20. Z. Wang, K. Mukai, and I.J. Lee, ISIJ Int. 39, 553 (1999).

    Article  Google Scholar 

  21. J. Sengupta, B.G. Thomas, H. Shin, G. Lee, and S. Kim, Metall. Mater. Trans. A 37, 1597 (2006).

    Article  Google Scholar 

  22. B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary, Metall. Mater. Trans. B 45, 22 (2014).

    Article  Google Scholar 

  23. L. Zhang and B.G. Thomas, Metall. Mater. Trans. B 37, 733 (2006).

    Article  Google Scholar 

  24. D. Gupta and A.K. Lahiri, Metall. Mater. Trans. B 25, 227 (1994).

    Article  Google Scholar 

  25. X. Deng, L. Li, X. Wang, Y.G. Ji, C. Ji, and G. Zhu, Int. J. Min Met. Mater. 21, 531 (2014).

    Article  Google Scholar 

  26. J.W. Elmer, S.M. Allen, and T.W. Eagar, Metall. Trans. A 20, 2117 (1989).

    Article  Google Scholar 

  27. C.A. Muojekwu, I.V. Samarasekera, and J.K. Brimacombe, Metall. Mater. Trans. B 26, 361 (1995).

    Article  Google Scholar 

  28. V.V. Zabil’skii and R.M. Nikonova, Met. Sci. Heat Treat. 41, 253 (1999).

    Article  Google Scholar 

  29. M.R. Ridolfi, S. Fraschetti, A.D. Vito, and L.A. Ferro, Metall. Mater. Trans. B 41, 1293 (2010).

    Article  Google Scholar 

  30. K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray, Ironmaking Steelmaking 32, 26 (2005).

    Article  Google Scholar 

  31. Y. Meng and B.G. Thomas, ISSTech 2003 Steelmaking Conf. Proc., vol. 86 (Warrendale, PA: ISS, 2003), pp. 589–606.

  32. M. Yao, X. Wang, and B. Du, Dev. Chem. Eng. Min. Process. 14, 459 (2006).

    Article  Google Scholar 

  33. W. Wang, K. Gu, L. Zhou, F. Ma, I.L. Sohn, D. Min, H. Matsuura, and F. Tsukihashi, ISIJ Int. 51, 1838 (2011).

    Article  Google Scholar 

  34. L. Zhou, W. Wang, F. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi, Metall. Mater. Trans. B 43, 354 (2012).

    Article  Google Scholar 

  35. L. Zhou, W. Wang, D. Huang, J. Wei, and J. Li, Metall. Mater. Trans. B 43, 925 (2012).

    Article  Google Scholar 

  36. L. Zhou, W. Wang, R. Liu, and B.G. Thomas, Metall. Mater. Trans. B 44, 1264 (2013).

    Article  Google Scholar 

  37. L. Zhou, W. Wang, B. Lu, G. Wen, and J. Yang, Met. Mater. Int. (accepted for publication, 2014).

  38. L. Zhou, W. Wang, J. Wei, and M. Jin, ISIJ Int. 53, 674 (2013).

    Article  Google Scholar 

  39. W. Wang (Ph.D. dissertation, Carnegie Mellon University, 2007).

  40. W. Wang and A.W. Cramb, Baosteel BAC 2006 Conf. Proc., vol. 1 (Shanghai, China: 2006), p. 129.

  41. H. Zhang, W. Wang, D. Zhou, F. Ma, B. Lu, and L. Zhou, Metall. Mater. Trans. B 45, 1038 (2014).

    Article  Google Scholar 

  42. M. Suzuki, H. Mizukami, T. Kitagawa, K. Kawakami, S. Uchida, and Y. Komatsu, ISIJ Int. 31, 254 (1991).

    Article  Google Scholar 

  43. X. Meng and M. Zhu, Ironmaking Steelmaking 36, 300 (2007).

    Article  Google Scholar 

  44. P.E. Ramirez-Lopez, P.D. Lee, and K.C. Mills, ISIJ Int. 50, 425 (2010).

    Article  Google Scholar 

  45. A. Badri, T.T. Natarajan, C.C. Snyder, K.D. Powers, F.J. Mannion, M. Byrne, and A.W. Cramb, Metall. Mater. Trans. B 36, 373 (2005).

    Article  Google Scholar 

  46. D. Zhou, W. Wang, H. Zhang, F. Ma, K. Chen, and L. Zhou, Metall. Mater. Trans. B E-pub ahead of print (2014).

  47. J.D. Hunt, Mater. Sci. Eng. 65, 75 (1984).

    Article  Google Scholar 

  48. S.C. Flood and J.D. Hunt, J. Cryst. Growth 82, 543 (1987).

    Article  Google Scholar 

  49. S.C. Flood and J.D. Hunt, J. Cryst. Growth 82, 552 (1987).

    Article  Google Scholar 

  50. W. Kurz, C. Bezencon, and M. Gaumann, Sci. Technol. Adv. Mater. 2, 185 (2001).

    Article  Google Scholar 

  51. A.E. Ares and C.E. Schvezov, Metall. Mater. Trans. A 31, 1611 (2000).

    Article  Google Scholar 

  52. B.G. Thomas, AIST Trans. 3, 2 (2006).

    Google Scholar 

  53. A. Ray, D. Mukherjee, S.K. Dhua, S. Mishra, and S.K. Bhattacharyya, J. Mater. Sci. Lett. 12, 1148 (1993).

    Article  Google Scholar 

  54. L. Zhang, J. Aoki, and B.G. Thomas, Metall. Mater. Trans. B 37, 361 (2006).

    Article  Google Scholar 

  55. P. Kaushik, J. Lehmann, and M. Nadif, Metall. Mater. Trans. B 43, 710 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Wang, W. Energy Saving Through the Control of Initial Solidification During Continuous Casting. JOM 66, 1595–1602 (2014). https://doi.org/10.1007/s11837-014-1116-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1116-7

Keywords

Navigation