Skip to main content
Log in

Energy and Resource Saving of Steelmaking Process: Utilization of Innovative Multi-phase Flux During Dephosphorization Process

  • Published:
JOM Aims and scope Submit manuscript

Abstract

An increase in the utilization efficiency of CaO, one of the major fluxing agents used in various steelmaking processes, is required to reduce the amount of discharged slag and energy consumption of the process. The authors have intensively focused on the development of innovative dephosphorization process by using so called “multi-phase flux” composed of solid and liquid phases. This article summarizes the research on the above topic done by the authors, in which the formation mechanisms of P2O5-containing phase during CaO or 2CaO·SiO2 dissolution into molten slag, the phase relationship between solid and liquid phases at equilibrium, and thermodynamic properties of P2O5-containing phase have been clarified. The reactions between solid CaO or 2CaO·SiO2 and molten CaO-FeO x -SiO2-P2O5 slag were observed by dipping solid specimen in the synthesized slag at 1573 K or 1673 K. The formation of the CaO-FeO layer and dual-phase layer of solid 2CaO·SiO2 and FeO x -rich liquid phase was observed around the interface from the solid CaO side toward the bulk slag phase side. Condensation of P2O5 into 2CaO·SiO2 phase as 2CaO·SiO2-3CaO·P2O5 solid solution was observed in both cases of CaO and 2CaO·SiO2 as solid specimens. Measurement of the phase relationship for the CaO-FeO x -SiO2-P2O5 system confirmed the condensation of P2O5 in solid phase at low oxygen partial pressure. The thermodynamics of 2CaO·SiO2-3CaO·P2O5 solid solution are to be clarified to quantitatively simulate the dephosphorization process, and the current results are also introduced. Based on the above results, the reduction of CaO consumption, the discharged slag curtailment, and energy-saving effects have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Pahlevani, S. Kitamura, H. Shibata, and N. Maruoka, ISIJ Int. 50, 822 (2010).

    Article  Google Scholar 

  2. S. Basu, A.K. Lahiri, and S. Seetharaman, Metall. Mater. Trans. B 38B, 357 (2007).

    Article  Google Scholar 

  3. S. Kitamura, S. Saito, K. Utagawa, H. Shitaba, and D.G.C. Robertson, ISIJ Int. 49, 1838 (2009).

    Article  Google Scholar 

  4. K. Ito, M. Yanagisawa, and N. Sano, Tetsu-to-Hagané 68, 342 (1982).

    Google Scholar 

  5. F. Tsukihashi, Tetsu-to-Hagané 95, 187 (2009).

    Article  Google Scholar 

  6. R. Inoue and H. Suito, ISIJ Int. 46, 174 (2006).

    Article  Google Scholar 

  7. R. Inoue and H. Suito, ISIJ Int. 46, 188 (2006).

    Article  Google Scholar 

  8. H. Takeshita, M. Hasegawa, Y. Kashiwaya, and M. Iwase, Steel Res. Int. 81, 100 (2010).

    Article  Google Scholar 

  9. T. Hamano, S. Fukagai, and F. Tsukihashi, ISIJ Int. 46, 490 (2006).

    Article  Google Scholar 

  10. S. Fukagai, T. Hamano, and F. Tsukihashi, ISIJ Int. 47, 187–189 (2007).

    Article  Google Scholar 

  11. R. Saito, H. Matsuura, K. Nakase, X. Yang, and F. Tsukihashi, Tetsu-to-Hagané 95, 258 (2009).

    Article  Google Scholar 

  12. X. Yang, H. Matsuura, and F. Tsukihashi, Tetsu-to-Hagané 95, 268 (2009).

    Article  Google Scholar 

  13. X. Yang, H. Matsuura, and F. Tsukihashi, ISIJ Int. 49, 1298 (2009).

    Article  Google Scholar 

  14. X. Yang, H. Matsuura, and F. Tsukihashi, ISIJ Int. 50, 702 (2010).

    Article  Google Scholar 

  15. X. Yang, H. Matsuura, and F. Tsukihashi, Mater. Trans. 51, 1094 (2010).

    Article  Google Scholar 

  16. X. Gao, H. Matsuura, I. Sohn, W. Wang, D.J. Min, and F. Tsukihashi, Metall. Mater. Trans. B 43B, 694 (2012).

    Article  Google Scholar 

  17. X. Gao, H. Matsuura, I. Sohn, W. Wang, D.J. Min, and F. Tsukihashi, Mater. Trans. 54, 544 (2013).

    Article  Google Scholar 

  18. X. Gao, H. Matsuura, M. Miyata, and F. Tsukihashi, ISIJ Int. 53, 1381 (2013).

    Article  Google Scholar 

  19. K. Goto, H. Matsuura, and F. Tsukihashi, CAMP-ISIJ 27, 226 (2014).

    Google Scholar 

  20. H. Matsuura and F. Tsukihashi, CAMP-ISIJ 26, 467 (2013).

    Google Scholar 

  21. W. Fix, H. Heymann, and R. Heinke, J. Am. Ceram. Soc. 52, 346 (1969).

    Article  Google Scholar 

  22. Y. Takeda and A. Yazawa, J. Mining Metall. Inst. Jpn. 96, 901 (1980).

    Google Scholar 

  23. S. Ban-ya, ISIJ Int. 33, 2 (1993).

    Article  Google Scholar 

  24. E.F. Osborn and A. Muan, Phase Equilibrium Diagrams of Oxide Systems (Columbus, OH: The American Ceramic Society, 1960), Plate 7.

  25. H. Kimura, T. Ogawa, M. Kakiki, A. Matsumoto, and F. Tsukihashi, ISIJ Int. 45, 506 (2005).

    Article  Google Scholar 

  26. K. Miyamoto, K. Naito, I. Kitagawa, and M. Matsuo, Tetsu-to-Hagané 95, 199 (2009).

    Article  Google Scholar 

  27. E.T. Turkdogan, ISIJ Int. 40, 964 (2000).

    Article  Google Scholar 

  28. M. Hino and K. Ito, Thermodynamic Data for Steelmaking (Sendai: Tohoku University Press, 2010), pp. 259–262.

    Google Scholar 

  29. M. Hasegawa, Y. Kashiwaya, and M. Iwase, High Temp. Mater. Process. 31, 421 (2012).

    Google Scholar 

  30. The Japan Iron and Steel Federation, Statistics of Japanese Steel Production, http://www.jisf.or.jp/en/statistics/production/TimeSeries.html

  31. E.T. Turkdogan, Physicochemical Properties of Molten Slags and Glasses (London: The Metals Society, 1983), pp. 126–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Matsuura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuura, H., Hamano, T., Zhong, M. et al. Energy and Resource Saving of Steelmaking Process: Utilization of Innovative Multi-phase Flux During Dephosphorization Process. JOM 66, 1572–1580 (2014). https://doi.org/10.1007/s11837-014-1108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1108-7

Keywords

Navigation