Skip to main content
Log in

Slag Characterization: A Necessary Tool for Modeling and Simulating Refractory Corrosion on a Pilot Scale

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The slag in pyrometallurgical operations plays a major role affecting the life of furnace refractory. As such, comprehensive mineralogical and chemical slag examination, physical property determination including the slag melting point or liquidus, and viscosity are necessary for precise understanding of a slag. At the RHI Technology Center Leoben, Austria, the main objective of slag characterization work is to reach a better understanding of refractory corrosion. This corrosion testwork is performed at the laboratory and pilot scale. Typically, corrosion tests are performed in an induction furnace or rotary kiln, with the main purpose being the improved selection of the most suitable refractory products to improve refractory performance in operating metallurgical furnaces. This article focuses on characterization of samples of six non-ferrous, customer-provided slags. This includes slag from a copper Peirce-Smith converter, a short rotary furnace for lead smelting, a titania-processing furnace, and a Ni-Cu top blowing rotary converter (TBRC) plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L.-J. Wang, M. Hayashi, K.-C. Chou, and S. Seetharaman, Metall. Mater. Trans. B 43B, 1338 (2012).

    Article  Google Scholar 

  2. W.G. Davenport, M. King, M. Schlesinger, and A.K. Biswas, Extractive Metallurgy of Copper, 4th ed. (Oxford, U.K.: Kidlington, 2002), pp. 57–72.

    Book  Google Scholar 

  3. T.P. Colclough, Trans. Faraday Soc. 21, 202 (1925).

    Article  Google Scholar 

  4. F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, and W.G. Davenport, Extractive Metallurgy of Nickel, Cobalt and Platinum-Group Metals (Oxford, U.K.: Kidlington, 2011), p. 610.

    Google Scholar 

  5. H. Shen and E. Forssberg, Waste Manag. 23, 933 (2003).

    Article  Google Scholar 

  6. P.J. Mackey, Can. Metall. Q. 21, 221 (1982).

    Article  Google Scholar 

  7. E. Vircikova and L. Molnar, Conserv. Recycl. 6, 133 (1992).

    Article  Google Scholar 

  8. R. Ziyadanogullari, Sep. Sci. Technol. 27, 389 (1992).

    Article  Google Scholar 

  9. C.D. Barnes, J. Lumsdaine, and S.M. O’Hare, AusIMM Proc. 298, 31 (1993).

    Google Scholar 

  10. O. Herreros, R. Quiroz, E. Manzano, C. Bou, and J. Vinals, Hydrometallurgy 49, 87 (1998).

    Article  Google Scholar 

  11. W.R.N. Snelgrove and J.C. Taylor, Can. Metall. Q. 20, 231 (1981).

    Article  Google Scholar 

  12. C.C. Banks and D.A. Harrison, Can. Metall. Q. 14, 183 (1975).

    Article  Google Scholar 

  13. B. Gorai and R.K. Jana, Resour. Conserv. Recycl. 39, 299 (2003).

    Article  Google Scholar 

  14. C. Atzeni, L. Massidda, and U. Sanna, Cem. Concr. Res. 26, 1381 (1996).

    Article  Google Scholar 

  15. M. Manz and L.J. Castro, Environ. Pollut. 98, 7 (1997).

    Article  Google Scholar 

  16. V.D. Eisenhüttenleute, Schlackenatlas (Düsseldorf, Germany: Verlag Stahleisen, 1981), p. 282.

    Google Scholar 

  17. H. Hasegawa, Y. Hoshino, T. Kasamoto, Y. Akaida, T. Kowatari, Y. Shiroki, H. Shibata, H. Ohta, and Y. Waseda, Metall. Mater. Trans. B 43B, 1405 (2012).

    Article  Google Scholar 

  18. D. Gregurek, A. Ressler, V. Reiter, A. Franzkowiak, A. Spanring, B. Drew, and D. Flynn, TMS 2013, Annu. Meet. Exhib. Suppl. Proc., 142nd ed. (New York: Wiley, 2013) pp. 231–239.

  19. D. Gregurek, A. Ressler, V. Reiter, A. Franzkowiak, A. Spanring, and T. Prietl, JOM 65, 1622 (2013).

    Article  Google Scholar 

  20. G. Routschka, Refractory Materials, 4th ed. (Vulkan-Verlag: Essen, 2011), p. 505.

  21. F. Pawlek, Metallhüttenkunde (Berlin, Germany: Walter de Gruyter, 1983), p. 865.

    Book  Google Scholar 

  22. R. Dittmeyer, W. Keim, G. Kreysa, and A. Oberholz, Winnacker-Küchler: Chemische Technik, 5th ed, Vol. 6A (Weinheim, Germany: Wiley-VCH Verlag, 2006), p. 796.

    Google Scholar 

  23. V.D. Eisenhüttenleute, Schlacken in der Metallurgie, Vol. 83 (Düsseldorf, Germany: Verlag Stahleisen, 1999), p. 372.

    Google Scholar 

  24. J.F. Elliott, 2nd International Symposium on Metallurgical Slags and Fluxes, ed. H.A. Fine and D.R. Gaskell (Warrendale, PA: TMS, 1984), pp. 45–61.

  25. C. Sartain (Plenary presentation at the Copper 2007 conference, Toronto, Ontario, Canada, 27 August 2007).

  26. G.V. Rao, B.D. Nayak, and J. Mines, Met. Fuels 40, 131 (1992).

    Google Scholar 

  27. P.T. Jones, Y. Pontikes, J. Elsen, Ö. Cizer, L. Boeheme, T.V. Gerven, D. Geysen, M. Guo, and B. Blanpain (Paper presented at the Proceedings of the 2nd International Slag Valorisation Symposium, Leuven, Belgium, 2011), p. 380.

  28. W.A. Deer, R.A. Howie, and J. Zussman, An Introduction to the Rock-Forming Minerals, 2nd ed. (Essex, U.K.: CM20 2 JE, 1992), pp. 108–77.

  29. S. Luidold, H. Schnideritsch, and H. Antrekowitsch, Berg-Huettenmaenn Monatsh Suppl. 156, 1 (2011).

    Article  Google Scholar 

  30. W. Libal and R. Hausner, Dtsch. Keram. Ges. Fachausschussber 50, 8 (1973).

    Google Scholar 

  31. W.E. Lee, B.B. Argent, and S. Zhang, J. Am. Ceram. Soc. 85, 2911 (2002).

    Article  Google Scholar 

  32. C.W. Bale, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton and S. Petersen, Calphad J. 62, 189–228 (2002).

  33. M.A. Duchense, A. Macchi, D.Y. Lu, R.W. Hughes, D. McCalden, and E.J. Anthony, Fuel Process. Technol. 91, 831 (2010).

    Article  Google Scholar 

  34. S.A. Decterov, A.N. Grundy, and A.D. Pelton (Paper presented at the Proceedings of the 8th International Conference on Molten Slags, Fluxes and Salts, Santiago, Chile, 2009), pp. 423–431.

  35. J.C. van Dyk, F.B. Waanders, S.A. Benson, M.L. Laumb, and K. Hack, Fuel Process. Technol. 88, 67 (2009).

    Google Scholar 

  36. G. Urbain, F. Cambier, M. Deletter, and M.R. Anseau, Trans. J. Br. Ceram. Soc. 80, 139 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gregurek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gregurek, D., Wenzl, C., Reiter, V. et al. Slag Characterization: A Necessary Tool for Modeling and Simulating Refractory Corrosion on a Pilot Scale. JOM 66, 1677–1686 (2014). https://doi.org/10.1007/s11837-014-1070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1070-4

Keywords

Navigation