Skip to main content
Log in

Effects of Withdrawal Rate and Temperature Gradient on the Microstructure Evolution in Directionally Solidified NiAl-36Cr-6Mo Hypereutectic Alloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effects of withdrawal rate and temperature gradient on the microstructure and growth interface morphology in directionally solidified Ni-29Al-36Cr-6Mo(at.%) hypereutectic alloy were investigated. Under the temperature gradient of 250 K/cm, well-aligned eutectic microstructure with lamellar morphology was obtained at the withdrawal rate of 6 μm/s. When the withdrawal rate was 10 μm/s, the microstructure changed to Cr(Mo) dendrites + eutectic lamellae. With the increasing withdrawal rate, the interdendritic eutectic growth interface changed from planar to cellular, the number of primary Cr(Mo) dendrites became greater, and the microstructure was refined. When the temperature gradient increased to 600 K/cm, the coupled eutectic growth zone of NiAl-Cr(Mo) alloy was expanded; a well-aligned eutectic microstructure could be obtained at higher rate of 10 μm/s. Furthermore, the planar/cellular transition rate of the interdendritic eutectic growth interface increased. Even at the same withdrawal rate, the number of primary Cr(Mo) dendrites was less and the microstructure was finer under the temperature gradient of 600 K/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.D. Noebe, R.R. Bowman, and M.V. Nathal, Inter. Mater. Rev. 38, 193 (1993).

    Article  Google Scholar 

  2. D.B. Miracle, Acta Metall. Mater. 41, 649 (1993).

    Article  Google Scholar 

  3. K.O. Yu, J.A. Oti, and W.S. Walston, JOM 45, 49 (1993).

    Article  Google Scholar 

  4. R. Darolia, JOM 43, 44 (1991).

    Article  Google Scholar 

  5. Y. Chen and H.M. Wang, J. Alloy Compd. 391, 49 (2005).

    Article  Google Scholar 

  6. R. Darolia, W.S. Walston, R. Noebe, A. Garg, and B.F. Oliver, Intermetallics 7, 1195 (1999).

    Article  Google Scholar 

  7. H.E. Cline and J.L. Walter, Metall. Trans. 1, 2907 (1970).

    Google Scholar 

  8. X.F. Chen, D.R. Johnson, and B.F. Oliver, Scr. Metall. Mater. 30, 975 (1994).

    Article  Google Scholar 

  9. H. Bei and E.P. George, Acta Mater. 53, 69 (2005).

    Article  Google Scholar 

  10. S.M. Joslin, X.F. Chen, B.F. Oliver, and R.D. Noebe, Mater. Sci. Eng. A 196, 9 (1995).

    Article  Google Scholar 

  11. J.M. Yang, JOM 49, 40 (1997).

    Article  Google Scholar 

  12. J.M. Yang, S.M. Jeng, K. Bain, and R.A. Amato, Acta Mater. 45, 295 (1997).

    Article  Google Scholar 

  13. X.F. Chen, D.R. Johnson, R.D. Noebe, and B.F. Oliver, J. Mater. Res. 10, 1159 (1995).

    Article  Google Scholar 

  14. J.D. Whittenberger, S.V. Raj, I.E. Locci, and J.A. Salem, Metall. Mater. Trans. A 33, 1385 (2002).

    Article  Google Scholar 

  15. S.V. Raj and I.E. Locci, Intermetallics 9, 217 (2001).

    Article  Google Scholar 

  16. W. Kurz and D.J. Fisher, Fundamentals of Solidification, 4th ed. (Switzerland: Trans Tech Publications Ltd., 1998).

    Google Scholar 

  17. R.S. Barclay, H.W. Kerr, and P. Niessen, J. Mater. Sci. 6, 1168 (1971).

    Article  Google Scholar 

  18. S. Milenkovic, A. Schneider, and G. Frommeyer, Intermetallics 19, 342 (2011).

    Article  Google Scholar 

  19. Z. Shang, J. Shen, J.F. Zhang, L. Wang, and H.Z. Fu, Intermetallics 22, 99 (2012).

    Article  Google Scholar 

  20. F. Mollard and M.C. Flemings, Trans. Met. Soc. AIME 239, 1534 (1967).

    Google Scholar 

  21. P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams (Materials Park, OH: ASM International, 1995).

    Google Scholar 

  22. D.M. Stefanescu, Science and Engineering of Casting Solidification, 2nd ed. (New York: Springer, 2009).

    Google Scholar 

  23. M.H. Burden and J.D. Hunt, J. Cryst. Growth 22, 328 (1974).

    Article  Google Scholar 

  24. J.D. Hunt and K.A. Jackson, Trans. Met. Soc. AIME 239, 864 (1967).

    Google Scholar 

  25. D.G. Mccartney, J.D. Hunt, and R.M. Jordan, Metall. Trans. A 11A, 1243 (1980).

    Article  Google Scholar 

  26. M. Plapp and A. Karma, Phys. Rev. E 60, 6865 (1999).

    Article  Google Scholar 

  27. H.E. Cline, Trans. Met. Soc. AIME 242, 1613 (1968).

    Google Scholar 

  28. P.R. Sahm and H.R. Killias, J. Mater. Sci. 12, 1027 (1970).

    Article  Google Scholar 

  29. J.T. Guo, C.Y. Cui, Y.X. Chen, D.X. Li, and H.Q. Ye, Intermetallics 9, 287 (2001).

    Article  Google Scholar 

  30. J.F. Zhang, J. Shen, Z. Shang, Z.R. Feng, L.S. Wang, and H.Z. Fu, Intermetallics 21, 18 (2012).

    Article  Google Scholar 

  31. J.D. Hunt and S.Z. Lu, Metall. Mater. Trans. A 27, 611 (1996).

    Article  Google Scholar 

  32. D. Bouchard and J.S. Kirkaldy, Metall. Mater. Trans. B 28, 651 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China and Natural Science Foundation of Shannxi Province for their financial supports under contract No. 51074128 and No. 2010JM6002. This work is also supported by the Doctorate Foundation of Northwestern Polytechnical University under contract No. CX201009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Z., Shen, J., Zhang, JF. et al. Effects of Withdrawal Rate and Temperature Gradient on the Microstructure Evolution in Directionally Solidified NiAl-36Cr-6Mo Hypereutectic Alloy. JOM 66, 1877–1885 (2014). https://doi.org/10.1007/s11837-014-1008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1008-x

Keywords

Navigation