Skip to main content
Log in

The Solidification Mode of Fe-Mn-Al-C Lightweight Steel

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Solidification behavior and solid-state transformation were investigated in Fe-Mn-Al-C lightweight steel. The solidification mode of the Fe-9.3Mn-5.6Al-0.2C (wt.%) lightweight steel was predicted to be the F mode (liquid → liquid + δ-ferrite → δ-ferrite → δ-ferrite + γ-austenite), according to the classification of the solidification modes of stainless steels. However, the microstructures of an ingot of the lightweight steel showed that the solidification occurred by the FA mode (liquid → liquid + δ-ferrite → liquid + δ-ferrite + γ-austenite → δ-ferrite + γ-austenite). To examine the difference between predicted and actual solidification modes, some specimens were annealed at various temperatures ranging from 1200°C to 1450°C for 10 min and then quenched. The microstructures of the annealed specimens exhibited that there were the narrow ranges of single δ-ferrite and solidification sections. This result indicates that the solidification mode of the present steel was the F mode, matching well with the predicted solidification mode. The reason for the FA mode, which was observed in the ingot, was because the liquid passed by a narrow solidification section and a single δ-ferrite region, and it directly entered the dual-phase region of δ-ferrite and γ-austenite during cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Sato, K. Tagawa, and Y. Inoue, Scr. Metall. 22, 899 (1988).

    Article  Google Scholar 

  2. G. Frommeyer and U. Brüx, Steel Res. Int. 77, 627 (2006).

    Google Scholar 

  3. J.D. Yoo and K.-T. Park, Mater. Sci. Eng. A 496, 417 (2008).

    Article  Google Scholar 

  4. S.W. Hwang, J.H. Ji, E.G. Lee, and K.-T. Park, Mater. Sci. Eng. A 528, 5196 (2011).

    Article  Google Scholar 

  5. J.E. Jin and Y.-K. Lee, Acta Mater. 60, 1680 (2012).

    Article  Google Scholar 

  6. K. Choi, C.H. Seo, H. Lee, S.K. Kim, J.H. Kwak, K.G. Chin, K.T. Park, and N.J. Kim, Scr. Mater. 63, 1028 (2010).

    Article  Google Scholar 

  7. S.Y. Han, S.Y. Shin, S. Lee, N.J. Kim, J.H. Kwak, and K.G. Chin, Metall. Mater. Trans. A 42A, 138 (2011).

    Article  Google Scholar 

  8. L.M. Roncery, S. Weber, and W. Theisen, Scr. Mater. 55, 997 (2012).

    Article  Google Scholar 

  9. K. Ishida, H. Ohtani, N. Satoh, R. Kainuma, and T. Nishizawa, ISIJ Int. 30, 680 (1990).

    Article  Google Scholar 

  10. Y. Sotou, N. Kamiya, R. Umino, I. Ohnuma, and K. Ishida, ISIJ Int. 50, 893 (2010).

    Article  Google Scholar 

  11. J.W. Fu, Y.S. Yang, J.J. Guo, J.C. Ma, and W.H. Tong, J. Crystal Growth 311, 132 (2008).

    Article  Google Scholar 

  12. J.W. Fu and Y.S. Yang, J. Alloys Compd. 580, 191 (2013).

    Article  Google Scholar 

  13. J.H. Park, CALPHAD 35, 455 (2011).

    Article  Google Scholar 

  14. J.W. Fu and Y.S. Yang, Mater. Lett. 83, 18 (2013).

    Article  Google Scholar 

  15. I. Varol and W.A. Baeslack, Metallography 23, 1 (1989).

    Article  Google Scholar 

  16. V. Rigaud, D. Daloz, J. Drillet, A. Perlade, P. Maugis, and G. Lesoult, ISIJ Int. 47, 898 (2007).

    Article  Google Scholar 

  17. J. Jeong, C.-Y. Lee, I.-J. Park, and Y.-K. Lee, J. Alloys Compd. 574, 299 (2013).

    Article  Google Scholar 

  18. H. Schneider, Foundry Trade J. 108, 563 (1960).

    Google Scholar 

  19. J.C. Ma, Y.S. Yang, W.H. Tong, Y. Fang, Y. Yu, and Z.Q. Hu, Mater. Sci. Eng. A 444, 64 (2007).

    Article  Google Scholar 

  20. J.W. Elmer, S.M. Allen, and T.W. Eagar, Metall. Trans. A 20A, 2117 (1989).

    Article  Google Scholar 

  21. K.H. Hwang, C.M. Wan, and J.G. Byrne, Mater. Sci. Eng. A 132, 161 (1991).

    Article  Google Scholar 

  22. J.-Y. Li, S. Sugiyama, and J. Yanagimoto, J. Mater. Process. Technol. 161, 396 (2005).

    Article  Google Scholar 

  23. F.-X. Huang, X.-H. Wang, J.-M. Zhang, C.-X. Ji, Y. Fang, and Y. Yu, J. Iron Steel Int. 15, 78 (2008).

    Article  Google Scholar 

  24. M.C. Flemings, Metall. Trans. A 22A, 957 (1991).

    Article  Google Scholar 

  25. H. Yin, T. Emi, and H. Shibata, Acta Mater. 47, 1523 (1999).

    Article  Google Scholar 

  26. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi, Acta Mater. 57, 941 (2009).

    Article  Google Scholar 

  27. R. Kaçar, Mater. Des. 25, 1 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Kook Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CY., Lee, YK. The Solidification Mode of Fe-Mn-Al-C Lightweight Steel. JOM 66, 1794–1799 (2014). https://doi.org/10.1007/s11837-014-1000-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1000-5

Keywords

Navigation