Skip to main content
Log in

Synthesis and Characterization of CrCuFeMnMo0.5Ti Multicomponent Alloy Bulks by Powder Metallurgy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, CrCuFeMnMo0.5Ti multicomponent alloy bulks were prepared by powder metallurgy of mechanical alloying and sintering. A simple body-centered cubic (bcc) solid solution was prepared after 40 h ball milling of the raw CrCuFeMnMo0.5Ti metallic powder. Particles of the alloyed powder are in microsized structures, which are actually a soft agglomeration of lamellar grains with thicknesses less than 1 μm. Meanwhile, the lamellar granules are consisted of nanosized grains under rigid cold welding. The 80-h ball-milled powder was consolidated by cold pressing and subsequent sintering at 800°C. The observed main phase in the consolidated sample after milling for 80 h is still a bcc solid solution. The solidified sample of 80-h ball-milled powder exhibits a Vickers hardness of 468 HV, which is much higher than 171 HV of the counterpart prepared from the raw metallic powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375, 213 (2004).

    Article  Google Scholar 

  3. T.K. Chen, T.T. Shun, J.W. Yeh, and M.S. Wong, Surf. Coat. Technol. 188, 193 (2004).

    Article  Google Scholar 

  4. A.L. Greer, Nature 366, 303 (1993).

    Article  Google Scholar 

  5. C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, and C.H. Ts, Metall. Mater. Trans. A 36A, 881 (2005).

    Article  Google Scholar 

  6. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007).

    Article  Google Scholar 

  7. B.S. Li, Y.P. Wang, M.X. Ren, C. Yang, and H.Z. Fu, Mater. Sci. Eng. A 498, 482 (2008).

    Article  Google Scholar 

  8. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Mater. Sci. Eng. A 508, 214 (2009).

    Article  Google Scholar 

  9. S. Guo, Q. Hu, C. Ng, and C.T. Liu, Intermetallics 41, 96 (2013).

    Article  Google Scholar 

  10. M.C. Gao and D.E. Alman, Entropy 15, 4504 (2013).

    Article  Google Scholar 

  11. C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, and S.Y. Chang, Metall. Mater. Trans. A 36A, 1263 (2005).

    Article  Google Scholar 

  12. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Intermetallics 15, 357 (2007).

    Article  Google Scholar 

  13. Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Chu, J.W. Yeh, and S.J. Lin, J. Alloys Compd. 509, 1607 (2011).

    Article  Google Scholar 

  14. K.B. Zhang and Z.Y. Fu, Intermetallics 28, 34 (2012).

    Article  Google Scholar 

  15. I. Kunce, M. Polanski, and J. Bystrzycki, Int. J. Hydrog. Energy 38, 12180 (2013).

    Article  Google Scholar 

  16. J.W. Yeh, Ann. Chim. Sci. Mater. 31, 633 (2006).

    Article  Google Scholar 

  17. Y.S. Huang, L. Chen, H.W. Lui, M.H. Cai, and J.W. Yeh, Mater. Sci. Eng. A 457, 77 (2007).

    Article  Google Scholar 

  18. H. Zhang, Y. Pan, Y.Z. He, and H.S. Jiao, Appl. Surf. Sci. 257, 2259 (2011).

    Article  Google Scholar 

  19. S. Varalakshmi, M. Kamaraj, and B.S. Murty, J. Alloy. Compd. 460, 253 (2008).

    Article  Google Scholar 

  20. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara, J. Alloy. Compd. 485, L31 (2009).

    Article  Google Scholar 

  21. Z.Q. Fu, W.P. Chen, H.Q. Xiao, L.W. Zhou, D.Z. Zhu, and S.F. Yang, Mater. Des. 44, 535 (2013).

    Article  Google Scholar 

  22. C.Z. Yao, P. Zhang, M. Liu, G.R. Li, J.Q. Ye, P. Liu, and Y.X. Tong, Electrochim. Acta 53, 8359 (2008).

    Article  Google Scholar 

  23. M.S. El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials (New York: William Andrew Publishing, 2000).

    Google Scholar 

  24. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).

    Article  Google Scholar 

  25. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  26. Y. Dong, Y.P. Lu, J.R. Kong, J.J. Zhang, and T.J. Li, J. Alloy. Compd. 573, 96 (2013).

    Article  Google Scholar 

  27. C.Y. Hsu, C.C. Juan, W.R. Wang, T.S. Sheu, J.W. Yeh, and S.K. Chen, Mater. Sci. Eng. A 528, 3581 (2011).

    Article  Google Scholar 

  28. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara, J. Alloy. Compd. 495, 33 (2010).

    Article  Google Scholar 

  29. J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, and S.J. Lin, Mater. Chem. Phys. 103, 41 (2007).

    Article  Google Scholar 

  30. J.Y. Huang, Y.D. Yu, Y.K. Wu, D.X. Li, and H.Q. Ye, Acta Mater. 45, 113 (1997).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Dr. Kuibao Zhang sincerely appreciates financial support of the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (Southwest University of Science and Technology, No. 12zxfk15) and Doctoral Project of Southwest University of Science and Technology (No. 11zx7147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuibao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Wen, G., Dai, H. et al. Synthesis and Characterization of CrCuFeMnMo0.5Ti Multicomponent Alloy Bulks by Powder Metallurgy. JOM 66, 2043–2049 (2014). https://doi.org/10.1007/s11837-014-0997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-0997-9

Keywords

Navigation