Skip to main content
Log in

Design of Novel Bainitic Steels: Moving from UltraFine to Nanoscale Structures

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The concepts of phase transformation theory can be exploited to design nanostructured steels that transform to bainite at temperatures as low as 150°C. The microstructure obtained is so refined that it is possible to achieve strength in excess of 2.5 GPa in a material that has considerable toughness (40 MPam1/2). Such a combination of properties has never been achieved before with bainite. A description of the characteristics and significance of this remarkable microstructure in the context of the mechanism of transformation is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F.G. Caballero and C. Capdevila, Mater. Sci. Technol. 29, 1149 (2013).

    Article  Google Scholar 

  2. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown, Mater. Sci. Technol. 18, 279 (2002).

    Article  Google Scholar 

  3. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, ISIJ Int. 43, 1238 (2003).

    Article  Google Scholar 

  4. H.K.D.H. Bhadeshia, Mater. Sci. Technol. 21, 1293 (2005).

    Article  Google Scholar 

  5. M. Soliman and H. Palkowski, ISIJ Int. 47, 1703 (2007).

    Article  Google Scholar 

  6. P. Hodgson, I. Timokhina, X. Xiong, A. Yoshitaka, and H. Beladi, Solid State Phenom. 172–174, 123 (2011).

    Article  Google Scholar 

  7. I.B. Timokhina, H. Beladi, X.Y. Xiong, Y. Adachi, and P.D. Hodgson, Acta Mater. 59, 5511 (2011).

    Article  Google Scholar 

  8. J.A. Da Cruz Junior, T.F.M. Rodrigues, V.D.C. Viana, and D.B. Santos, Mater. Sci. Forum 706–709, 173 (2012).

  9. C. Garcia-Mateo, T. Sourmail, F.G. Caballero, V. Smanio, M. Kuntz, C. Ziegler, A. Leiro, E. Vuorinen, R. Elvira, and T. Teeri, Mater. Sci. Technol. doi:10.1179/1743284713Y.0000000428.

  10. ISO 683-17:1999, Heat-Treated Steels, Alloy Steels and Free-Cutting Steels—Part 17: Ball and Roller Bearing Steels, 1999.

  11. C. Garcia-Mateo and F.G. Caballero, ISIJ Int. 45, 1736 (2005).

    Article  Google Scholar 

  12. C. Garcia-Mateo, F. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, and R. Elvira, Mater. Sci. Eng. A 549, 185 (2012).

    Article  Google Scholar 

  13. A. Leiro, E. Vuorinen, K.G. Sundin, B. Prakash, T. Sourmail, V. Smanio, F.G. Caballero, C. Garcia-Mateo, and R. Elvira, Wear 298, 42 (2013).

    Article  Google Scholar 

  14. T. Sourmail, F.G. Caballero, C. Garcia-Mateo, V. Smanio, C. Ziegler, M. Kuntz, R. Elvira, A. Leiro, E. Vuorinen, and T. Teeri, Mater. Sci. Technol. 29, 1166 (2013).

    Article  Google Scholar 

  15. C. Garcia-Mateo and H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 378, 289 (2004).

    Article  Google Scholar 

  16. F.G. Caballero and H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8, 251 (2004).

    Article  Google Scholar 

  17. F.G. Caballero, M.K. Miller, C. Garcia-Mateo, C. Capdevila, and C. Garcia de Andrés, JOM 60 (12), 16 (2008).

    Article  Google Scholar 

  18. Q. Zhu, C.M. Sellars, and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 23, 757 (2007).

    Article  Google Scholar 

  19. S. Chatterjee, H.S. Wang, J.R. Yang, and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 22, 641 (2006).

    Article  Google Scholar 

  20. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, ISIJ Int. 43, 1821 (2003).

    Article  Google Scholar 

  21. H.K.D.H. Bhadeshia, Mathematical Modelling of Weld Phenomena III (London, U.K.: Institute of Materials, 1997), pp. 229–284.

    Google Scholar 

  22. G. Langford and M. Cohen, ASM-Trans. 62, 623 (1969).

    Google Scholar 

  23. G. Langford and M. Cohen, Metall. Mater. Trans. A 1, 1478 (1970).

    Google Scholar 

  24. C. Garcia-Mateo and F.G. Caballero, Mater. Trans. JIM 46, 1839 (2005).

    Article  Google Scholar 

  25. H.K.D.H. Bhadeshia, Bainite in Steels. Transformations, Microstructure and Properties, 2nd ed. (London, U.K.: Institute of Materials, Minerals and Mining, 2001).

  26. A.R. Marder and G. Krauss, Trans. ASM 60, 651 (1967).

    Google Scholar 

  27. S. Matsuda, T. Inoue, and M. Ogasawara, Trans. JIM 9, 343 (1968).

    Google Scholar 

  28. T. Furuhara, H. Kawata, S. Morito, and T. Maki, Mater. Sci. Eng. A 431, 228 (2006).

    Article  Google Scholar 

  29. C.A.N. Lanzillotto and F.B. Pickering, Met. Sci. 16, 371 (1982).

    Article  Google Scholar 

  30. N.K. Balliger and T. Gladman, Met. Sci. 15, 95 (1981).

    Article  Google Scholar 

  31. H.K.D.H. Bhadeshia and D.V. Edmonds, Metall. Trans. A 10, 895 (1979).

    Article  Google Scholar 

  32. P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. Van Humbeeck, and F. Delannay, ISIJ Int. 41, 1068 (2001).

    Article  Google Scholar 

  33. K. Nohara, Y. Ono, and N. Ohashi, Tetsu-To-Hagané-J. ISIJ 63, 212 (1977).

    Google Scholar 

  34. F. Lani, Q. Furnemont, T. Van Rompaey, F. Delannay, P.J. Jacques, and T. Pardoen, Acta Mater. 55, 3695 (2007).

    Article  Google Scholar 

  35. K. Hase, C. Garcia-Mateo, and H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 438–440, 145 (2006).

    Article  Google Scholar 

  36. C. Garcia-Mateo, F.G. Caballero, M.K. Miller, and J.A. Jimenez, J. Mater. Sci. 47, 1004–1010 (2012).

    Article  Google Scholar 

  37. F.G. Caballero, M.K. Miller, A.J. Clarke, and C. Garcia-Mateo, Scr. Mater. 63, 442 (2010).

    Article  Google Scholar 

  38. L.C. Chang and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 11, 105 (1995).

    Article  Google Scholar 

  39. M.K. Fondekar, A.M. Rao, and A.K. Mallik, Metall. Trans. A 1, 885 (1970).

    Google Scholar 

  40. M. Nemoto, High Voltage Electron Microscopy (New York: Academic Press, 1974).

    Google Scholar 

  41. J. Cornide, G. Miyamoto, F.G. Caballero, T. Furuhara, M.K. Miller, and C. Garcia-Mateo, Solid State Phenom. 172–174, 117 (2011).

    Article  Google Scholar 

  42. G.M. Smith (Ph.D. Dissertation, University of Cambridge, 1984).

  43. S. Morito, J. Nishikawa, and T. Maki, ISIJ Int. 43, 1475 (2003).

    Article  Google Scholar 

  44. D. Kalish and M. Cohen, Mater. Sci. Eng. A 6, 156 (1970).

    Article  Google Scholar 

  45. A.H. Cottrell and B.A. Bilby, Proc. Phys. Soc. 62A, 49 (1949).

    Article  Google Scholar 

  46. H.K.D.H. Bhadeshia and J.W. Christian, Metall. Trans. A 21A, 767 (1990).

    Article  Google Scholar 

  47. M. Takahashi and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 6, 592 (1990).

    Article  Google Scholar 

  48. H.K.D.H. Bhadeshia, Acta Metall. 28, 1103 (1980).

    Article  Google Scholar 

  49. L.C. Chang, Mater. Sci. Eng. A 368, 175 (2004).

    Article  Google Scholar 

  50. F.G. Caballero, M.K. Miller, S.S. Babu, and C. Garcia-Mateo, Acta Mater. 55, 381 (2007).

    Article  Google Scholar 

  51. M.K. Miller, P.A. Beaven, S.S. Brenner, and G.D.W. Smith, Metall. Trans. A 14A, 1021 (1983).

    Google Scholar 

  52. S.S. Babu, K. Hono, and T. Sakurai, Metall. Mater. Trans. B 25, 499 (1994).

    Article  Google Scholar 

  53. T.D. Bigg, D.K. Matlock, J.G. Speer, and D.V. Edmonds, Solid State Phenom. 172–174, 827 (2011).

    Article  Google Scholar 

  54. F.G. Caballero, M.K. Miller, and C. Garcia-Mateo, Acta Mater. 58, 2338 (2010).

    Article  Google Scholar 

  55. J.H. Jang, H.K.D.H. Bhadeshia, and D.-W. Suh, Scr. Mater. 68, 195 (2013).

    Article  Google Scholar 

  56. C.N. Hulme-Smith, I. Lonardelli, A.C. Dippel, and H.K.D.H. Bhadeshia, Scr. Mater. 69, 409 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Spanish Ministry of Science and Innovation for funding this research under the contract MAT2010-15330, respectively. Atom-probe tomography research (M.K.M.) was supported through a user project supported by ORNL’s Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Caballero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caballero, F.G., Garcia-Mateo, C. & Miller, M.K. Design of Novel Bainitic Steels: Moving from UltraFine to Nanoscale Structures. JOM 66, 747–755 (2014). https://doi.org/10.1007/s11837-014-0908-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-0908-0

Keywords

Navigation