Skip to main content
Log in

Heat Treatment of AZ91D Mg-Al-Zn Alloy: Microstructural Evolution and Dynamic Response

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Magnesium alloys are attracting great interest from the automotive industry because of the potential for weight reduction. An AZ91D cast alloy was studied in the current work to understand the effect of heat treatment on the microstructure and dynamic compressive properties. The selected heat treatments include solution treatment (T4) and solution treatment followed by aging (T6). The as-cast alloy microstructure consists of intermetallic β-phase (Mg17Al12) precipitates surrounded by α + β lamellar eutectic in α-Mg solid solution. The AZ91D-T4 specimens showed small β-phase precipitates along the grain boundaries and regions of eutectic mixture. The T6 heat treatment causes the β-phase platelets in the α + β eutectic to grow and develop into β-precipitates. The difference in the phase morphology reflects into the mechanical properties. The Vickers hardness of the T6 heat-treated specimens was 3.6% higher than the as-cast alloy. The compressive yield strengths of T4 and T6 treated specimens were 1.3% and 43.1% higher than those of as-cast specimens. The high strain rate compression testing resulted in increase in the strength with strain rate for the T4 and T6 specimens. A maximum increase of 42% was observed in T6 specimen tested at a strain rate of 4,000/s in comparison to the quasi-static compression. Under high strain rate compression testing, the T6 heat-treated specimens showed failure of the β-precipitates resulting in increased energy absorption in comparison to the quasi-static compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T.M. Pollock, Science 328, 986 (2010).

    Article  Google Scholar 

  2. T. Lewin, The Complete Book of BMW: Every Model Since 1950 (St. Paul, MN: MBI Publishing Company, 2004), p. 345.

    Google Scholar 

  3. C. Blawert, N. Hort, and K.U. Kainer, Trans. Indian Inst. Met. 57, 397 (2004).

    Google Scholar 

  4. I. Ostrovsky, and Y. Henn, Paper presented at the Int. Conf. New Challenges in Aeronautics, Moscow, Russia, 19–22 August (2007).

  5. B.L. Mordike and T. Ebert, Mater. Sci. Eng. A 302, 37 (2001).

    Article  Google Scholar 

  6. P. Lyon, Magnesium Technology 2004, ed. A.A. Luo (Warrendale, PA: TMS, 2004), pp. 311–315.

  7. L. Čížek, M. Greger, L. Pawlica, L.A. Dobrzański, and T. Tański, J. Mater. Proc. Technol. 157–158, 466 (2004).

    Google Scholar 

  8. H. Watarai, Sci. Technol. Trends Q. Rev. 18, 84 (2006).

    Google Scholar 

  9. M. Bamberger and G. Dehm, Ann. Rev. Mater. Res. 38, 505 (2008).

    Article  Google Scholar 

  10. E.H.A. Beck, The Technology of Magnesium and its Alloys (London: F.A. Hughes & Co. Limited, 1940).

    Google Scholar 

  11. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).

    Article  Google Scholar 

  12. M. Yoo, K. Shin, and N. Kim, Metall. Mater. Trans. A 35, 1629 (2004).

    Article  Google Scholar 

  13. L. Peng, G. Chen, Y.-T. Zhao, K. Huang, and Y. Shao, Trans. Nonferrous Met. Soc. China 21, 2365 (2011).

    Article  Google Scholar 

  14. M.C. Zhao, M. Liu, G.L. Song, and A. Atrens, Adv. Eng. Mater. 10, 1–2 (2008).

    Google Scholar 

  15. D. Luong, N. Gupta, and P. Rohatgi, JOM 63, 48 (2011).

    Google Scholar 

  16. H. Chandler, Heat Treater’s Guide: Practices and Procedures for Nonferrous Alloys (Materials Park, OH: ASM Int., 1996).

    Google Scholar 

  17. A. Kiełbus, L. Ciżek, and L. Pawlica, Magnesium (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KgaA, 2005), pp. 196–201.

  18. N.N. Aung and W. Zhou, J. Appl. Electrochem. 32, 12 (2002).

    Article  Google Scholar 

  19. W. Zhou, T. Shen, and N.N. Aung, Corros. Sci. 52, 3 (2010).

    Google Scholar 

  20. Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, and K. Higashi, Mater. Sci. Eng. A 280, 225 (2000).

    Article  Google Scholar 

  21. J. Adamiec, A. Kielbus, J. Cwajna, and J. Pasko, Proc. 7th Int. Conf. Magnesium Alloys and Their Applications, ed. K.U. Kainer (Dresden, Germany: Wiley VCH, 2006), pp. 506–511.

  22. M. Tan, Z. Liu, and G. Quan, Energy Procedia 16 (A), 457 (2012).

  23. M.-C. Zhao, M. Liu, G. Song, and A. Atrens, Corros. Sci. 50, 7 (2008).

    Google Scholar 

  24. G. Song, A. Atrens, and M. Dargusch, Corros. Sci. 41, 2 (1998).

    Article  Google Scholar 

  25. N.I. Zainal Abidin, D. Martin, and A. Atrens, Corros. Sci. 53, 862 (2011).

    Article  Google Scholar 

  26. K. Ishikawa, H. Watanabe, and T. Mukai, Mater. Lett. 59, 12 (2005).

    Article  Google Scholar 

  27. Y.Z. Lü, Q.D. Wang, W.J. Ding, X.Q. Zeng, and Y.P. Zhu, Mater. Lett. 44, 5 (2000).

    Article  Google Scholar 

  28. N. Gupta, D.D. Luong, and P.K. Rohatgi, J. Appl. Phys. 109 (10), 103512-1-7 (2011).

  29. A.S.M. International and A.S.M. Handbook, Alloy Phase Diagrams, Vol. 3 (Materials Park, OH: ASM Int., 1992).

    Google Scholar 

  30. C.R. Brooks, Heat Treatment, Structure and Properties of Nonferrous Alloys (Materials Park, OH: American Society for Metals, 1982).

    Google Scholar 

  31. W.W. Chen and B. Song, Split Hopkinson (Kolsky) Bar. Design, Testing and Applications (New York: Springer, 2011).

    Book  MATH  Google Scholar 

  32. A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, and D.H. StJohn, J. Light Met. 1, 61 (2001).

    Article  Google Scholar 

  33. Y. Wang, G. Liu, and Z. Fan, Acta Mater. 54, 689 (2006).

    Article  Google Scholar 

  34. J.-Y. Li, J.-X. Xie, J.-B. Jin, and Z.-X. Wang, Trans. Nonferrous Met. Soc. China 22, 1028 (2012).

    Article  Google Scholar 

  35. D. Duly, J.P. Simon, and Y. Brechet, Acta Metall. Mater. 43, 101 (1995).

    Google Scholar 

  36. S. Celotto, Acta Mater. 48, 1775 (2000).

    Article  Google Scholar 

  37. K.N. Braszczyńska-Malik, J. Alloys Compd. 477, 870 (2009).

    Article  Google Scholar 

  38. K.N. Braszczyńska-Malik, Magnesium AlloysDesign, Processing and Properties, ed. F. Czerwinski (Rijeka, Croatia: InTech, 2011), pp. 95–112.

  39. H. Kanahashi, T. Mukai, Y. Yamada, K. Shimojima, M. Mabuchi, T. Aizawa, and K. Higashi, Mater. Sci. Eng. A 308, 283 (2001).

    Article  Google Scholar 

  40. N. Gupta, D.D. Luong, and K. Cho, Metals 2, 238 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge U.S. Army Research Laboratory Cooperative Agreement W911NF-11-2-0096 and the Office of Naval Research grant N00014-10-1-0988 for supporting this research. The authors also thank Mechanical and Aerospace Engineering Department for providing facilities. Surbhi Mittal is acknowledged for help with image analysis. The views presented in this article do not necessarily represent the views of the funding agencies or the government of the United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luong, D.D., Shunmugasamy, V.C., Cox, J. et al. Heat Treatment of AZ91D Mg-Al-Zn Alloy: Microstructural Evolution and Dynamic Response. JOM 66, 312–321 (2014). https://doi.org/10.1007/s11837-013-0800-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0800-3

Keywords

Navigation