Skip to main content
Log in

Metastable Soft Magnetic Materials Produced by Mechanical Alloying: Analysis Using an Equivalent Time Approach

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Mechanical alloying, a ball milling technique where heterogeneous starting powders are homogenized and alloyed, has become a versatile technique for the production of metastable microstructures: nanocrystalline and/or amorphous alloys, supersaturated solid solutions, etc. Ball milling is affected by many experimental parameters and the analysis of the dynamics of milling is needed to compare different experiments and to optimize time and costs. In this work, a short overview on the microstructural techniques used to characterize the powder is supplied. The soft magnetic properties of mechanically alloyed powders are also described, as well as the magnetocaloric response of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.S. Benjamin and T.E. Volin, Metal. Trans. 5, 1929 (1974).

    Article  Google Scholar 

  2. C. Suryanarayana, Prog. Mater Sci. 46, 1 (2001).

    Article  Google Scholar 

  3. A.Y. Yermakov, Y.Y. Yurchikov, and V.A. Barinov, Fiz. Metall. Metall. 52, 1184 (1981).

    Google Scholar 

  4. C.C. Koch, O.B. Cavin, C.G. McKamey, and J.O. Scarbrough, Appl. Phys. Lett. 43, 1017 (1983).

    Article  Google Scholar 

  5. M.E. McHenry, M.A. Willard, and D.E. Laughlin, Prog. Mater Sci. 44, 291 (1999).

    Article  Google Scholar 

  6. A. Inoue, Progr. Mater. Sci. 43, 365 (1998).

    Article  Google Scholar 

  7. F. Delogu, M. Monagheddu, G. Mulas, L. Schiffini, and G. Cocco, Int. J. Non-Eq. Process. 11, 235 (2000).

    Google Scholar 

  8. F. Delogu, G. Mulas, L. Schiffini, and G. Cocco, Mater. Sci. Eng. A 382, 280 (2004).

    Article  Google Scholar 

  9. L. Takacs, Processing and Properties of Nanocrystalline Materials, ed. C. Suryanarayana, J. Singh, and F.H. Froes (Warrendale, PA: TMS, 1996), pp. 453–464.

    Google Scholar 

  10. A. Concas, N. Lai, M. Pisu, and G. Cao, Chem. Eng. Sci. 61, 3746 (2006).

    Article  Google Scholar 

  11. M. Abdellaoui and E. Gaffet, Acta. Metal. Mater. 43, 1087 (1995).

    Article  Google Scholar 

  12. J.J. Ipus, J.S. Blázquez, V. Franco, M. Millán, A. Conde, D. Oleszak, and T. Kulik, Intermetallics 16, 470 (2008).

    Article  Google Scholar 

  13. J.J. Ipus, J.S. Blázquez, V. Franco, A. Conde, and L.F. Kiss, Intermetallics 18, 565 (2010).

    Article  Google Scholar 

  14. J.S. Blázquez, J.J. Ipus, C.F. Conde, and A. Conde, J. Alloy Compd. 536, S9 (2012).

    Article  Google Scholar 

  15. C.C. Koch and J.D. Whittenberger, Intermetallics 4, 339 (1996).

    Article  Google Scholar 

  16. C.C. Koch, Mater. Trans. JIM 36, 85 (1995).

    Google Scholar 

  17. E.M. Kirkpatrick, S.A. Majetich, and M.E. McHenry, IEEE Trans. Mag. 32, 4502 (1996).

    Article  Google Scholar 

  18. V.M. Chakka, B. Altuncevahir, Z.Q. Jin, Y. Li, and J.P. Liu, J. Appl. Phys. 99, 08E912 (2006).

    Article  Google Scholar 

  19. B.Z. Cui, L.Y. Zheng, W.F. Li, J.F. Liu, and G.C. Hadjipanayis, Acta Mater. 60, 1721 (2012).

    Article  Google Scholar 

  20. N.G. Akdogan, W.F. Li, and G.C. Hadjipanayis, J. Nanoparticle Res. 14 (2012).

  21. J. Bednarcik, K. Saksl, R. Nicula, S. Roth, and H. Franz, J. Non-Crys. Sol. 354, 5117 (2008).

    Article  Google Scholar 

  22. K.J. Miller, A. Colletti, P.J. Papi, and M.E. McHenry, J. Appl. Phys. 107, 09A313 (2010).

    Article  Google Scholar 

  23. J.J. Ipus, J.S. Blázquez, V. Franco, and A. Conde, Intermetallics 15, 1132 (2007).

    Article  Google Scholar 

  24. J.J. Ipus, J.S. Blázquez, V. Franco, and A. Conde, Intermetallics 16, 1073 (2008).

    Article  Google Scholar 

  25. L. Schultz, Mater. Sci. Eng. 97, 15 (1988).

    Article  Google Scholar 

  26. K.J. Miller, M. Sofman, K. McNerny, and M.E. McHenry, J. Appl. Phys. 107, 09A305 (2010).

    Article  Google Scholar 

  27. Y.P. Shen, H.H. Hng, and J.T. Oh, J. Alloy Compd. 379, 266 (2004).

    Article  Google Scholar 

  28. A.H. Taghvaei, M. Stoica, G. Vaughan, M. Ghaffari, S. Maleksaeedi, and K. Janghorban, J. Alloy Compd. 512, 85 (2012).

    Article  Google Scholar 

  29. K. Simeonidis, C. Sarafidis, E. Papastergiadis, M. Angelakeris, I. Tsiaoussis, and O. Kalogirou, Intermetallics 19, 589 (2011).

    Article  Google Scholar 

  30. M. Krasnowski and H. Matyja, Mater. Sci. Forum 343–346, 302 (2000).

    Article  Google Scholar 

  31. Y.J. Liu and I.T.H. Chang, Mater. Sci. Eng. A 325, 25 (2002).

    Article  Google Scholar 

  32. J.J. Ipus, J.S. Blázquez, S. Lozano-Perez, and A. Conde, Phil. Mag. 89, 1415 (2009).

    Article  Google Scholar 

  33. S. Katakam, J.Y. Hwang, H. Vora, S.P. Harimkar, R. Banerjee, and N.B. Dahotre, Scr. Mater. 66, 538 (2012).

    Article  Google Scholar 

  34. J.J. Ipus, J.S. Blazquez, A. Conde, and S. Lozano-Perez, J. Alloy Compd. 505, 86 (2010).

    Article  Google Scholar 

  35. N. Schlorke, J. Eckert, and L. Schultz, J. Phys. D 32, 855 (1999).

    Article  Google Scholar 

  36. J.J. Ipus, J.S. Blázquez, V. Franco, C.F. Conde, and A. Conde, J. Alloy Compd. 509, 1407 (2011).

    Article  Google Scholar 

  37. S. Roth, M. Stoica, J. Degmova, U. Gaitzsch, J. Eckert, and L. Schultz, J. Mag. Mag. Mater. 304, 192 (2006).

    Article  Google Scholar 

  38. K. Gheisari, S. Shahriari, and S. Javadpour, J. Alloy Compd. 552, 146 (2013).

    Article  Google Scholar 

  39. M.H. Stoica, J. Degmova, S. Roth, J. Eckert, H. Grahl, L. Schultz, A.R. Yavari, A. Kvick, G. Heunen, Mater. Trans. 43, 1966 (2002).

    Google Scholar 

  40. G. Herzer, IEEE Trans. Mag. 26, 1397 (1990).

    Article  Google Scholar 

  41. T. Shen, R. Schwarz, and J. Thompson, Phys. Rev. B 72 (2005).

  42. R.C. O’Handley, Modern Magnetic Materials. Principles and Applications (New York: Wiley, 2000).

    Google Scholar 

  43. J.J. Ipus, J.S. Blázquez, V. Franco, A. Conde, and S. Lozano-Perez, Phys. Express. 2, 1 (2012).

    Google Scholar 

  44. H. Ucar, J.J. Ipus, V. Franco, M.E. McHenry, and D.E. Laughlin, JOM 64, 782 (2012).

    Article  Google Scholar 

  45. J.J. Ipus, J.S. Blázquez, V. Franco, A. Conde, and L.F. Kiss, J. Appl. Phys. 105, 123922 (2009).

    Article  Google Scholar 

  46. J.J. Ipus, J.S. Blázquez, V. Franco, and A. Conde, J. Alloy Compd. 496, 7 (2010).

    Article  Google Scholar 

  47. J.J. Ipus, H. Ucar, and M.E. McHenry, IEEE Trans. Mag. 47, 2494 (2011).

    Article  Google Scholar 

  48. N.J. Jones, H. Ucar, J.J. Ipus, M.E. McHenry, and D.E. Laughlin, J. Appl. Phys. 111 (2012).

  49. J.S. Blazquez, V. Franco, and A. Conde, Intermetallics 26, 52 (2012).

    Article  Google Scholar 

  50. A. Chrobak, A. Bajorek, G. Chelkowska, G. Haneczok, and M. Kwiecien, Phys. Stat. Solidi A 206, 731 (2009).

    Article  Google Scholar 

  51. J. Gass, H. Srikanth, N. Kislov, S. S. Srinivasan, and Y. Emirov, J. Appl. Phys. 103 (2008).

  52. P. Gorria, P. Alvarez, J. Sanchez Marcos, J.L. Sanchez Llamazares, M.J. Perez, and J.A. Blanco, Acta Mater. 57, 1724 (2009).

    Article  Google Scholar 

  53. K. Mandal, D. Pal, O. Gutfleisch, P. Kerschl, and K.H. Mueller, J. Appl. Phys. 102 (2007).

  54. D.M. Rajkuma, M.M. Raja, R. Gopalan, and V. Chandrasekaran, J. Mag. Mag. Mater. 320, 1479 (2008).

    Article  Google Scholar 

  55. V. Franco, J.S. Blázquez, B. Ingale, and A. Conde, Annu. Rev. Mater. Res. 42, 305 (2012).

    Article  Google Scholar 

  56. P. Gutlich, E. Bill, and A.X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry. Fundamentals and Applications (Heidelberg: Springer, 2011).

    Book  Google Scholar 

  57. J.S. Blázquez, J.J. Ipus, M. Millán, V. Franco, A. Conde, D. Oleszak, and T. Kulik, J. Alloy Compd. 469, 169 (2009).

    Article  Google Scholar 

  58. J. He, F. Zhou, G. Chang, and E.J. Lavernia, J. Mater. Sci. 36, 2955 (2001).

    Article  Google Scholar 

  59. J.J. Ipus, J.S. Blázquez, V. Franco, A. Conde, M. Krasnowski, T. Kulik, and L.F. Kiss, J. Appl. Phys. 107, 073901 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. V. Franco for fruitful discussions and suggestions. This work was supported by the Spanish Ministry of Science and Innovation and EU FEDER (Project MAT 2010-20537), the PAI of the Regional Government of Andalucía (Project P10-FQM-6462), and the United States Office of Naval Research (Project N00014-11-1-0311). J.J. Ipus acknowledges a contract from the Regional Government of Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Blázquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blázquez, J.S., Ipus, J.J., Lozano-Pérez, S. et al. Metastable Soft Magnetic Materials Produced by Mechanical Alloying: Analysis Using an Equivalent Time Approach. JOM 65, 870–882 (2013). https://doi.org/10.1007/s11837-013-0616-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0616-1

Keywords

Navigation