Skip to main content

Advertisement

Log in

Influence of Gas Flow Rate for Formation of Aligned Nanorods in ZnO Thin Films for Solar-Driven Hydrogen Production

  • Published:
JOM Aims and scope Submit manuscript

Abstract

ZnO thin films have been deposited in mixed Ar/N2 gas ambient at substrate temperature of 500°C by radiofrequency sputtering of ZnO targets. We find that an optimum N2-to-Ar ratio in the deposition ambient promotes the formation of well-aligned nanorods. ZnO thin films grown in ambient with 25% N2 gas flow rate promoted nanorods aligned along c-axis and exhibit significantly enhanced photoelectrochemical (PEC) response, compared with ZnO thin films grown in an ambient with different N2-to-Ar gas flow ratios. Our results suggest that chamber ambient is critical for the formation of aligned nanostructures, which offer potential advantages for improving the efficiency of PEC water splitting for H2 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Nature (London) 238, 37 (1972).

    Article  Google Scholar 

  2. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001).

    Article  Google Scholar 

  3. O. Khaselev and J.A. Turner, Science 280, 425 (1998).

    Article  Google Scholar 

  4. V.M. Aroutiounian, V.M. Arakelyan, and G.E. Shahnazaryan, Sol. Energy 78, 581 (2005).

    Article  Google Scholar 

  5. J. Yuan, M. Chen, J. Shi, and W. Shangguan, Int. J. Hydrogen Energy 31, 1326 (2006).

    Article  Google Scholar 

  6. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes, Nano Lett. 5, 191 (2005).

    Article  Google Scholar 

  7. B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  8. K. Kakiuchi, E. Hosono, and S. Fujihara, J. Photochem. Photobiol. A: Chem. 179, 81 (2006).

    Article  Google Scholar 

  9. T.F. Jaramillo, S.H. Baeck, A. Kleiman-Shwarsctein, and E.W. McFarland, Macromol. Rapid Commun. 25, 297 (2004).

    Article  Google Scholar 

  10. X. Liu, X. Wu, H. Cao, and R.P.H. Chang, J. Appl. Phys. 95, 3141 (2004).

    Article  Google Scholar 

  11. W.I. Park, D.H. Kim, S.-W. Jung, and G.-C. Yi, Appl. Phys. Lett. 80, 4232 (2002).

    Article  Google Scholar 

  12. S. Choopun, H. Tabata, and T. Kawai, J. Cryst. Growth 274, 167 (2005).

    Article  Google Scholar 

  13. F. Xu, Z.-Y. Yuan, G.-H. Du, T.-Z. Ren, C. Bouvy, M. Halasa, and B.-L. Su, Nanotechnology 17, 588 (2006).

    Article  Google Scholar 

  14. K.-S. Ahn, S. Shet, T. Deutsch, C.S. Jiang, Y. Yan, M. Al-Jassim, and J. Turner, J. Power Sources 176, 387 (2008).

    Article  Google Scholar 

  15. S. Shet, K.-S. Ahn, N. Ravindra, Y. Yan, J. Turner, and M. Al-Jassim, J. Mater. 62, 25 (2010).

    Google Scholar 

  16. S. Shet, K.-S. Ahn, Y. Yan, T. Deutsch, K.M. Chrusrowski, J. Turner, M. Al-Jassim, and N. Ravindra, J. Appl. Phys. 103, 073504 (2008).

    Article  Google Scholar 

  17. S. Shet, K.-S. Ahn, T. Deutsch, H. Wang, N. Ravindra, Y. Yan, J. Turner, and M. Al-Jassim, J. Mater. Res. 25, 69 (2010). doi:10.1557/JMR.2010.0017.

    Article  Google Scholar 

  18. K.-S. Ahn, Y. Yan, S. Shet, T. Deutsch, J. Turner, and M. Al-Jassim, Appl. Phys. Lett. 91, 231909 (2007).

    Article  Google Scholar 

  19. K.-S. Ahn, Y. Yan, M.-S. Kang, J.-Y. Kim, S. Shet, H. Wang, J. Turner, and M. Al-Jassim, Appl. Phys. Lett. 95, 022116 (2009).

    Article  Google Scholar 

  20. K.-S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, and M. Al-Jassim, Appl. Phys. Lett. 93, 163117 (2008).

    Article  Google Scholar 

  21. S. Shet, K.-S. Ahn, T. Deutsch, H. Wang, N. Ravindra, Y. Yan, J. Turner, and M. Al- Jassim, J. Power Sources 195, 5801 (2010).

    Article  Google Scholar 

  22. S. Shet, K.-S. Ahn, H. Wang, N. Ravindra, Y. Yan, J. Turner, and M. Al-Jassim, J. Mater. Sci. (2010). doi:10.1007/s10853-010-4561-x.

    Google Scholar 

  23. X. Li, Y. Yan, T.A. Gessert, C.L. Perkins, D. Young, C. DeHart, M. Young, and T.J. Coutts, J. Vac. Sci. Technol. A 21, 1342 (2003).

    Article  Google Scholar 

  24. C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures (Amsterdam: Elsevier, 2006), Chap. 3.

  25. D. Paluselli, B. Marsen, E.L. Miller, and R.E. Rocheleau, Electrochem. Solid-State Lett. 8, G301 (2005).

    Article  Google Scholar 

  26. Y. Li, X. Li, C. Yang, and Y. Li, J. Mater. Chem. 13, 2641 (2003).

    Article  Google Scholar 

  27. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).

    Article  Google Scholar 

  28. C.X. Xu, X.W. Sun, X.H. Zhang, L. Ke, and S.J. Chua, Nanotechnology 15, 856 (2004).

    Article  Google Scholar 

  29. S. Dutta, S. Chattopadhyay, D. Jana, A. Banerjee, S. Manik, S.K. Pradhan, M. Sutradhar, and A. Sarkar, J. Appl. Phys. 100, 114328 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy under Contract # DE-AC36-08GO28308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Shet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shet, S., Chen, L., Tang, H. et al. Influence of Gas Flow Rate for Formation of Aligned Nanorods in ZnO Thin Films for Solar-Driven Hydrogen Production. JOM 64, 526–530 (2012). https://doi.org/10.1007/s11837-012-0299-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0299-z

Keywords

Navigation