Skip to main content
Log in

Integrating Materials and Life Sciences Toward the Engineering of Biomimetic Materials

  • Published:
JOM Aims and scope Submit manuscript

Research in the field of biological and biomimetic materials constitutes a case study of how traditional research boundaries are becoming increasingly obsolete. Positioned at the intersection of life and physical sciences, it is becoming more and more evident that future development in this area will require extensive interaction between materials and life scientists. To highlight this cross-talking, we provide a brief overview of the field, intended to illustrate how these disciplines can be integrated. We start with a short historical perspective, emphasizing the role of biologists in initiating early studies in the field. In the second part of the paper, a summary of important biochemical concepts and techniques relevant to biological materials is presented, with the goal of guiding nonspecialists towards the relevant techniques and knowledge required to investigate potential model systems. In the third part, we describe two case studies that emphasize the critical role of biosynthesis in understanding structure–function–property relationships in biological materials. We conclude with some remarks related to our own perception of how integration of materials and life sciences will lead to future developments in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. It should be mentioned that the plots were prepared with the data available at the time of publication. Since then, many more materials and quantitative data have been obtained, which do not appear on these early Ashby plots of biological materials.

  2. The series Methods in Molecular Biology published by Humana Press and available online from “Springer Protocol”34 provides step-by-step, concise protocols for such work. Many references in this section come from this series.

References

  1. P. Fratzl and J. Aizenberg, Adv. Mater. 21, 387 (2009).

    Article  Google Scholar 

  2. T. Weis-Fogh and A. Krogh, J. Exp. Biol. 28, 344 (1951).

    Google Scholar 

  3. T. Weis-Fogh, J. Exp. Biol. 37, 889 (1960).

    Google Scholar 

  4. L. Pauling, R.B. Corey, and H.R. Branson, Proc. Natl. Acad. Sci. USA 37, 205 (1951).

    Article  Google Scholar 

  5. F.H.C. Crick, Acta Crystallogr. A 6, 689 (1953).

    Article  Google Scholar 

  6. B. Apostolovic, D. Maarten, and H.-A. Klok, Chem. Soc. Rev. 39, 3541 (2010).

    Article  Google Scholar 

  7. S.A. Wainwright, W.D. Biggs, J.D. Currey, and J.W. Gosline, Mechanical Design in Organisms (Princeton: Princeton University Press, 1976).

    Google Scholar 

  8. J. Vincent, Structural Biomaterials (London: McMillan, 1982), p. 244.

    Google Scholar 

  9. J.D. Currey, Bones—Structures and Mechanics (Princeton, NJ: Princeton University Press, 2002), p. 456.

    Google Scholar 

  10. A.P. Jackson, J.F.V. Vincent, and R.M. Tunner, Proc. R. Soc. Lond. B B234, 415 (1988).

    Article  Google Scholar 

  11. A.H. Heuer, D.J. Fink, V.J. Laraia, J.L. Arias, P.D. Calvert, K. Kendall, G.L. Messing, J. Blackwell, P.C. Rieke, and D.H. Thompson, Science 255, 1098 (1992).

    Article  Google Scholar 

  12. S. Kamat, X. Su, R. Ballarini, and A.H. Heuer, Nature 405, 1036 (2000).

    Article  Google Scholar 

  13. A.G. Evans, Z. Suo, R.Z. Wang, I.A. Aksay, M.Y. He, and J.W. Hutchinson, J. Mater. Res. 16, 2475 (2001).

    Article  Google Scholar 

  14. R. Menig, M.H. Meyers, M.A. Meyers, and K.S. Vecchio, Acta Mater. 48, 2383 (2000).

    Google Scholar 

  15. R.K. Nalla, J.H. Kinney, and R.O. Ritchie, Nat. Mater. 2, 164 (2003).

    Article  Google Scholar 

  16. H.S. Gupta, J. Seto, W. Wagermaier, P. Zaslansky, B. Boesecke, and P. Fratzl, Proc. Natl. Acad. Sci. USA 103, 17741 (2006).

    Article  Google Scholar 

  17. U. Wegst and M.F. Ashby, Phil. Mag. 84, 2167 (2004).

    Article  Google Scholar 

  18. D. Rubin, A. Miserez, and J.H. Waite, Advances in Insect Physiology, Vol. 38, ed. J. Casas (New York: Elsevier, 2010), p. 75.

    Google Scholar 

  19. R. Wang and H.S. Gupta, Annu. Rev. Mater. Res. 2011, 41 (2011).

    Article  Google Scholar 

  20. A.S. Tatham and P.R. Shewry, Philos. Trans. R. Soc. Lond. B: Biol. Sci. 357, 229 (2002).

    Google Scholar 

  21. J.M. Gosline, P.A. Guerette, C.S. Ortlepp, and K.N. Savage, J. Exp. Biol. 202, 3295 (1999).

    Google Scholar 

  22. S. Keten, Z. Xu, B. Ihle, and M.J. Buehler, Nat. Mater. 9, 359 (2010).

    Article  Google Scholar 

  23. H.A. Lowenstam and S. Weiner, On Biomineralization (New York, NY, USA: Oxford University Press, 1989).

    Google Scholar 

  24. S. Mann, Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford Chemistry Masters (New York, NY, USA: Oxford University Press, 2001).

    Google Scholar 

  25. A.M. Belcher, X.H. Wu, R.J. Christensen, P.K. Hansma, and D.E. Morse, Nature 281, 56 (1996).

    Article  Google Scholar 

  26. G. Falini, S. Albeck, S. Weiner, and L. Addadi, Science 271, 67 (1996).

    Article  Google Scholar 

  27. M. Suzuki, K. Saruwatari, T. Kogure, Y. Yamamoto, T. Nishimura, T. Kato, and H. Nagasawa, Science 325, 1388 (2009).

    Article  Google Scholar 

  28. M. Yano, K. Nagai, K. Morimoto, and K. Miyamoto, Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 144, 254 (2006).

    Article  Google Scholar 

  29. J.C. Weaver, J. Aizenberg, G.E. Fantner, D. Kisailus, A. Woesz, P. Allen, K. Fields, M.J. Porter, F.W. Zok, and P.K. Hansma, J. Struct. Biol. 158, 93 (2007).

    Article  Google Scholar 

  30. A. Miserez, J.C. Weaver, P.J. Thurner, J. Aizenberg, Y. Dauphin, P. Fratzl, D.E. Morse, and F.W. Zok, Adv. Funct. Mater. 18, 1 (2008).

    Google Scholar 

  31. J.N. Cha, K. Shimizu, Y. Zhou, S.C. Christiansen, B.F. Chmelka, G.D. Stucky, and D.E. Morse, Proc. Natl. Acad. Sci. USA 96, 361 (1999).

    Article  Google Scholar 

  32. D. Kisailus, Q. Truong, Y. Amemiya, J. C. Weaver, and D.E. Morse, Proc. Natl. Acad. Sci. USA. 103, 5652 (2006).

    Google Scholar 

  33. N. Huebsch and D.J. Mooney, Nature 462, 426 (2009).

    Article  Google Scholar 

  34. http://www.springerprotocols.com.

  35. I. Davidson, Methods in Molecular Biology: Protein Sequencing Protocols, 2nd ed., Vol. 211, ed. B.J. Smith (Totwa, NJ, USA: Humana, 2003),

    Google Scholar 

  36. F.D. Macchi, F.J. Shen, R.G. Keck, and R.J. Harris, Methods in Molecular Biology: Amino Acid Analysis Protocols, Vol. 159, ed. C. Cooper, N. Packer, and K. Williams (Totwa, NJ, USA: Humana, 2000), p. 9.

    Chapter  Google Scholar 

  37. S. Kochhar, B. Mouratou, and P. Christen, Methods in Molecular Biology: Amino Acid Analysis Protocols, Vol. 159, ed. C. Cooper, N. Packer, and K. Williams (Totwa, NJ, USA: Humana, 2000), p. 49.

    Chapter  Google Scholar 

  38. R.K. Scopes, Protein Purification: Principles and Practice (New York: Springer, 1993), p. 399.

    Google Scholar 

  39. M. Kinter and N.E. Sherman, Protein Sequencing and Identification Using Tandem Mass Spectrometry (New York: Wiley, 2000), p. 301.

    Book  Google Scholar 

  40. P.L. Lee, P.B. Messersmith, J.N. Israelachvili, and J.H. Waite, Annu. Rev. Mater. Res. 41, 99 (2011).

    Article  Google Scholar 

  41. B. Ma, K. Zhang, C. Hendrie, C. Liang, M. Li, A. Doherty-Kirby, and G. Lajoie, Rapid Commun. Mass Spectrom. 17, 2337 (2003).

    Article  Google Scholar 

  42. J.M. Walker, Methods in Molecular Biology: Protein Sequencing Protocols, Vol. 64, ed. B.J. Smith (Totwa, NJ, USA: Humana, 1998),

    Google Scholar 

  43. D.L. Nelson and M.M. Cox, Principles of Biochemistry (New York: W.H. Freeman, 2005), p. 1119.

    Google Scholar 

  44. J. Sambrook and D.W. Russel, Molecular Cloning: A Laboratory Manual, 3rd ed., 3 Vol. Set (NY, USA: Cold Srping Harbor Laboratory Press, Cold Spring Harbor, 2001), p. 2344.

  45. J.M.S. Bartlett and D. Stirling, PCR Protocols. Methods in Molecular Biology, 2nd ed. (Totowa, NJ: Humana, 2003), p. 545.

    Book  Google Scholar 

  46. E. Scotto-Lavino, G. Du, and M.A. Frohman, Nat. Protoc. 1, 2742 (2006).

    Article  Google Scholar 

  47. E. Scotto-Lavino, G. Du, and M.A. Frohman, Nat. Protoc. 1, 2555 (2006).

    Article  Google Scholar 

  48. D.J.S. Hulmes, Collagen: Structure and Mechanics, ed. P. Fratzl (New York: Springer Science, 2008),

    Google Scholar 

  49. H. Lee, N.F. Scherer, and P.B. Messersmith, Proc. Natl. Acad. Sci. USA 103, 12999 (2006).

    Article  Google Scholar 

  50. D.S. Hwang, H. Zeng, A. Masic, M.J. Harrington, J.N. Israelachvili, and J.H. Waite, J. Biol. Chem. 285, 25850 (2010).

    Article  Google Scholar 

  51. H. Birkedal, R.K. Khan, N.L. Slack, C. Broomell, H.C. Lichtenegger, F.W. Zok, G.D. Stucky, and J.H. Waite, ChemBioChem 7, 1392 (2006).

    Article  Google Scholar 

  52. A. Miserez, D. Rubin, and J.H. Waite, J. Biol. Chem. 285, 38115 (2010).

    Article  Google Scholar 

  53. E.V. Petrotchenko, J.J. Serpa, and C.H. Borchers, Anal. Chem. 82, 817 (2010).

    Article  Google Scholar 

  54. N. Blow, Nat. Methods 6, 389 (2009).

    Article  Google Scholar 

  55. H. Zeng, D.S. Hwang, J.N. Israelachvili, and J.H. Waite, Proc. Natl. Acad. Sci. USA 107, 12850 (2010).

    Article  Google Scholar 

  56. Z. Ganim, H.S. Chung, A.W. Smith, L.P. Deflores, K.C. Jones, and A. Tokmakoff, Acc. Chem. Res. 41, 432 (2008).

    Article  Google Scholar 

  57. P. Colomban, H.M. Dinh, J. Riand, L.C. Prinsloo, and B. Meauchamp, J. Raman Spectrosc. 39, 1749 (2008).

    Article  Google Scholar 

  58. C.T. Lim, E.H. Zhou, A. Li, S.R.K. Vedula, and H.X. Fu, Mater. Sci. Eng., C C26, 1278 (2006).

    Article  Google Scholar 

  59. E.M. Puchner and H.E. Gaub, Curr. Opin. Struct. Biol. 19, 605 (2009).

    Article  Google Scholar 

  60. J.M. Gosline, M.A. Lillie, E. Carrington, P.A. Guerette, C. Ortlepp, and K. Savage, Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 121 (2002).

    Article  Google Scholar 

  61. P. Fratzl, eds., Collagen: Structure and Mechanics (New York: Springer, 2008), p. 505.

    Google Scholar 

  62. M.J. Buehler, Collagen: Structure and Mechanics, ed. P. Fratzl (New York: Springer, 2008), p. 175.

  63. K.E. Kadler, D.F. Holmes, J.A. Trotter, and J.A. Chapman, Biochem. J. 316, 1 (1996).

    Google Scholar 

  64. L.E.R. O’leary, J.A. Fallas, E.L. Bakota, M.K. Kang, and J.D. Hartgerink, Nat. Chem. 3, 821 (2011).

    Article  Google Scholar 

  65. R.J. Stewart, J.C. Weaver, D.E. Morse, and J.H. Waite, J. Exp. Biol. 207, 4727 (2004).

    Article  Google Scholar 

  66. H. Zhao, C. Sun, R.J. Stewart, and J.H. Waite, J. Biol. Chem. 280, 42938 (2005).

    Article  Google Scholar 

  67. C.G. De Kruif, F. Weinbreck, and R.K. De Vries, Curr. Opin. Colloid Interface Sci. 9, 340 (2004).

    Article  Google Scholar 

  68. H. Shao and R.J. Stewart, Adv. Mater. 22, 729 (2010).

    Article  Google Scholar 

  69. B.D. Winslow, H. Shao, R.J. Stewart, and P.A. Tresco, Biomaterials 31, 9373 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful for support provided by the Singapore National Research Foundation (NRF) through a NRF Fellowship (A.M.), and the Singapore Maritime Port Authority (MPA) through the Maritime Clean Energy Research Program (MCERP) under the umbrella of the Energy Research Institute at NTU (ERI@N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Miserez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miserez, A., Guerette, P.A. Integrating Materials and Life Sciences Toward the Engineering of Biomimetic Materials. JOM 64, 494–504 (2012). https://doi.org/10.1007/s11837-012-0296-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0296-2

Keywords

Navigation