Skip to main content
Log in

Thermal conductivity of UO2 fuel: Predicting fuel performance from simulation

  • Advanced Fuel Performance: Modeling and Simulation
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recent progress in understanding the thermal-transport properties of UO2 for fission reactors is reviewed from the perspective of computer simulations. A path to incorporating more accurate materials models into fuel performance codes is outlined. In particular, it is argued that a judiciously integrated program of atomic-level simulations and mesoscale simulations offers the possibility of both better predicting the thermal-transport properties of UO2 in light-water reactors and enabling the assessment of the thermal performances of novel fuel systems for which extensive experimental databases are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kleykamp, J. Nucl. Mater., 131(2–3) (1985), pp. 221–246.

    Article  CAS  Google Scholar 

  2. H. Matzke and H. Blank, J. Nucl. Mater., 166(1–2) (1989), pp. 120–131.

    Article  CAS  Google Scholar 

  3. D. O’Boyle, F. Brown, and J. Sanecki, J. Nucl. Mater., 29(1) (1969), pp. 27–42.

    Article  Google Scholar 

  4. G. Berna, C. Beyer, K. Davis, and D.D. Lanning, FRAPCON-3: A Computer Code for the Calculation of Steady-State, Thermal Mechanical Behavior of Oxide Fuel Rods for High Burnup,, vol. 2 of NUREG/CR-6534. PNNL-11513 (Pacific Northwest National Laboratory, Richland, WA, 1997).

    Google Scholar 

  5. M. Bohn, FRACAS—A Subcode for the Analysis of Fuel Pellet-cladding Mechanical Interaction, TREENUREG-1028 (1977).

  6. Method for Calculating the Fractional Release of the Volatile Fission Products from Oxide Fuel, ANSI/ANS-5.4-1982, American Nuclear Society (1982).

  7. D.L. Hagrman, G.A. Reymann, and R.E. Mason, MATPRO Version 11 (Revision 2): A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior, vol. Rev. 2 of NUREG/CR-0497, TREE-1280 Rev. 2 (1981).

  8. J.K. Fink, J. Nucl. Mater., 279(1) (2000), pp. 1–18.

    Article  CAS  Google Scholar 

  9. N. Ashcroft and D. Mermin, Solid State Physics (Philadelphia, PA: Saunders College Publishing, 1976).

    Google Scholar 

  10. D. Frenkel and B. Smit, Molecular Dynamics Simulations, 2nd ed. (New York: Academic Press, 2002).

    Google Scholar 

  11. P.K. Schelling, S.R. Phillpot, and P. Keblinski, Phys. Rev. B, 65 (2002), 144306.

    Article  Google Scholar 

  12. K. Govers, S. Lemehov, M. Hou, and M. Verwerft, J. Nucl. Mater., 366(1–2) (2007), pp. 161–177.

    Article  CAS  Google Scholar 

  13. G. Busker, “Solution and Migration of Impurity Ions in UO2, U3O8, and Y2O3” (Ph.D. thesis, Imperial College of Science, Technology and Medicine, 2002).

  14. T. Watanabe, S.B. Sinnott, J.S. Tulenko, R.W. Grimes, P.K. Schelling, and S.R. Phillpot, J. Nucl. Mater., 375(3) (2008), pp. 388–396.

    Article  CAS  Google Scholar 

  15. T. Watanabe, S.G. Srivilliputhur, P.K. Schelling, J.S. Tulenko, S.B. Sinnott, and S.R. Phillpot, J. Am. Ceram. Soc., 92 (2009), pp. 850–856.

    Article  CAS  Google Scholar 

  16. S. Yamasaki, T. Arima, K. Idemitsu, and Y. Inagaki, Int. J. Thermophys., 28 (2007), pp. 661–673.

    Article  CAS  Google Scholar 

  17. P.G. Lucuta, H. Matzke, and R.A. Verrall, J. Nucl. Mater., 223(1) (1995), pp. 51–60.

    Article  CAS  Google Scholar 

  18. D.A. Vega, T. Watanabe, S.B. Sinnott, S.R. Phillpot, and J.S. Tulenko, Nucl. Technol., 165 (2009), pp. 308–312.

    CAS  Google Scholar 

  19. R. Berman, Thermal Conduction in Solids (Oxford, U.K.: Claredon Press, 1976).

    Google Scholar 

  20. J. Callaway and H.C. von Baeyer, Phys. Rev., 120 (1960), pp. 1149–1154.

    Article  CAS  Google Scholar 

  21. G. Chen, Nanoscale Energy Transport And Conversion: A Parallel Treatment of Electrons, Molecules, Phonons and Photons (New York: Oxford University Press, 2005).

    Google Scholar 

  22. P.G. Klemens, Proc. Phys. Soc. A, 68(12) (1955), p. 1113.

    Article  Google Scholar 

  23. P.G. Klemens, Phys. Rev., 119 (1960), pp. 507–509.

    Article  CAS  Google Scholar 

  24. P. Klemens, Solid State Physics, 7 (New York: Academic Press, Inc., 1958), p. 1.

    Google Scholar 

  25. K. Ohashi, J. Phys. Soc. Jpn., 24(3) (1968), pp. 437–445.

    Article  CAS  Google Scholar 

  26. C.T. Walker and R.O. Pohl, Phys. Rev., 131 (1963), pp. 1433–1442.

    Article  CAS  Google Scholar 

  27. P.C. Millett, D. Wolf, T. Desai, S. Rokkam, and A. El-Azab, J. Appl. Phys., 104(3) (2008), 033512.

    Article  Google Scholar 

  28. B. Schulz, High Temp.-High Press., 13 (1981), pp. 649–660.

    CAS  Google Scholar 

  29. P.C. Millett and M. Tonks, J. Nucl. Mater., 412(3) (2011), pp. 281–286.

    Article  CAS  Google Scholar 

  30. H.S. Yang, G. Bai, L.J. Thompson, and J.A. Eastman, Acta Mater., 50 (2002), pp. 2309–2317.

    Article  CAS  Google Scholar 

  31. H. Matzke and J. Spino, J. Nucl. Mater., 248 (1997), pp. 170–179.

    Article  CAS  Google Scholar 

  32. J. Noirot, I. Auburn, L. Desgranges, K. Hanifi, J. Lamontagne, B. Pasquet, C. Valot, P. Blanpain, and J. Cognon, Nucl. Eng. Technol., 41 (2009), pp. 155–162.

    CAS  Google Scholar 

  33. J. Noirot, L. Desgranges, and J. Lamontagne, J. Nucl. Mater., 372(2–3) (2008), pp. 318–339.

    Article  CAS  Google Scholar 

  34. I.L.F. Ray, H. Matzke, H.A. Thiele, and M. Kinoshita, J. Nucl. Mater., 245(2–3) (1997), pp. 115–123.

    Article  CAS  Google Scholar 

  35. D. Lacroix, K. Joulain, and D. Lemonnier, Phys. Rev. B, 72 (2005), 064305.

    Article  Google Scholar 

  36. S. Mazumder and A. Majumdar, J. Heat Transfer, 123(4) (2001), pp. 749–759.

    Article  Google Scholar 

  37. A. Mittal and S. Mazumder, J. Heat Transfer, 132(5) (2010), 052402.

    Article  Google Scholar 

  38. R. Escobar, B. Smith, and C. Amon, J. Electron. Packaging, 128(2) (2006), pp. 115–124.

    Article  CAS  Google Scholar 

  39. S. Narumanchi, J. Murthy, and C. Amon, Heat Mass Transfer, 42 (2006), pp. 478–491.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon R. Phillpot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillpot, S.R., El-Azab, A., Chernatynskiy, A. et al. Thermal conductivity of UO2 fuel: Predicting fuel performance from simulation. JOM 63, 73–79 (2011). https://doi.org/10.1007/s11837-011-0143-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0143-x

Keywords

Navigation