Skip to main content
Log in

Microstructure-based description of the deformation of metals: Theory and application

  • Enabling ICME
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstrac

Aiming for an integrated approach to computational materials engineering in an industrial context poses big challenges in the development of suitable materials descriptions for the different steps along the processing chain. The first key component is to correctly describe the microstructural changes during the thermal and mechanical processing of the base material into a semi-finished product. Explicit representations of the microstructure are most suitable there. The final processing steps and particularly component assessment then has to describe the entire component which requires homogenized continuum mechanical representations. A key challenge is the step in between, the determination of the (macroscopic) materials descriptions from microscopic structures. This article describes methods to include microstructure into descriptions of the deformation of metal, and demonstrates the central steps of the simulation along the processing chain of an automotive component manufactured from a dual phase steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gumbsch, in Handbook of Materials Modeling, ed. S. Yip (Dordrecht, Netherlands: Springer Verlag, 2005), pp. 2713–2718.

    Chapter  Google Scholar 

  2. D. Raabe, F. Roters, F. Barlat, and L.-Q. Chen, editors, Continuum Scale Simulation of Engineering Materials: Fundamentals-Microstructures-Process Applications (Weinheim, Germany: Wiley-VCH, 2004).

    Google Scholar 

  3. G. Dehm, T.J. Balk, B. Von Blanckenhagen, P. Gumbsch, and E. Arzt, Zeitschrift für Metallkunde, 93 (2002), pp. 383–391.

    CAS  Google Scholar 

  4. B. Von Blanckenhagen, E. Arzt, and P. Gumbsch, Acta Materialia, 52 (2004), pp. 773–784.

    Article  Google Scholar 

  5. J. Senger, D. Weygand, P. Gumbsch, and O. Kraft, Scripta Materialia, 58 (2008), pp. 587–590.

    Article  CAS  Google Scholar 

  6. C. Motz, D. Weygand, J. Senger, and P. Gumbsch, Acta Materialia, 56 (2008), pp. 1942–1955.

    Article  CAS  Google Scholar 

  7. D. Raabe and F. Roters, Intern. J. Plast., 20 (2004), pp. 339–361.

    Article  Google Scholar 

  8. E. Kröner, Int. J. Solids and Structures, 38 (2001), pp. 1115–1134.

    Article  Google Scholar 

  9. T. Hochrainer, M. Zaiser, and P. Gumbsch, Philosophical Magazine, 87 (2007), pp. 1261–1282.

    Article  CAS  Google Scholar 

  10. S. Sandfeld, T. Hochrainer, P. Gumbsch, and M. Zaiser, Philosophical Magazine, 90 (2010), pp. 3697–3728.

    Article  CAS  Google Scholar 

  11. D. Raabe, P. Klose, B. Engl, K.-P. Imlau, F. Friedel, and F. Roters, Adv. Eng. Mater., 4 (2002), pp. 169–180.

    Article  CAS  Google Scholar 

  12. O. Engler and J. Hirsch, Mat. Sci. Eng. A, 336 (2002), pp. 249–262.

    Article  Google Scholar 

  13. L. Neumann, R. Kopp, A. Ludwig, M. Wu, A. Bührig-Polaczek, M. Schneider, M. Crumbach, and G. Gottstein, Mater. Sci. Eng., 12 (2004), pp. S19–S31.

    Google Scholar 

  14. N. Peranio, Y.J. Li, F. Roters, and D. Raabe, Mater. Sc. Eng. A, 527 (2010), pp. 4161–4168.

    Article  Google Scholar 

  15. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock, Mater. Sci. Eng. A, 441 (2006), pp. 1–17.

    Article  Google Scholar 

  16. P. Haupt, Continuum Mechanics and Theory of Materials (Berlin: Springer, 2002).

    Google Scholar 

  17. E. Kröner, “Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen,” Archive for Rational Mechanics and Analysis, 4 (1959), pp. 273–334.

    Article  Google Scholar 

  18. J. Mandel, “Plasticite Classique et Viscoplasticite,” CISM Course Vol. 97 (1971).

  19. E. Lee and D. Liu, J. Applied Physics, 38 (1967), pp. 19–27.

    Article  CAS  Google Scholar 

  20. A. Staroselsky and L. Anand, Int. J. Plasticity, 19 (2003), pp. 1843–1864.

    Article  CAS  Google Scholar 

  21. S.R. Kalidindi, J. Mechanics and Physics of Solids, 46 (1998), pp. 267–271.

    Article  CAS  Google Scholar 

  22. A. Prakash, S.M. Weygand, and H. Riedel, Computational Materials Science, 45(3) (2009), pp. 744–750.

    Article  CAS  Google Scholar 

  23. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater., 58 (2010), pp. 1152–1211.

    Article  CAS  Google Scholar 

  24. S. Turteltaub and A.S.J. Suiker, J. Mechanics and Physics of Solids, 53 (2005), pp. 1747–1788.

    Article  CAS  Google Scholar 

  25. R.J. Asaro, in Advances in Applied Mechanics Volume 23, ed. John W. Hutchinson and Theodore Y. Wu (Amsterdam, the Netherlands: Elsevier, 1983), pp. 1–115.

    Chapter  Google Scholar 

  26. A. Ma, F. Roters, and D. Raabe, Acta Mater., 54 (2006), pp. 2169–2179.

    Article  CAS  Google Scholar 

  27. J. Lubliner, Plasticity Theory (New York: Macmillan Publishing, 1990).

    Google Scholar 

  28. J.R. Rice, J. Applied Mechanics, 37 (1970), pp. 728.

    Article  Google Scholar 

  29. G. Cailletaud, O. Diard, F. Feyel, and S. Forest, Technische Mechanik, 23 (2003), pp. 130–145.

    Google Scholar 

  30. J.W. Hutchinson, Proc. R. Soc. Lond. A, 10(348) (1976), pp. 101–127.

    Google Scholar 

  31. E. Voce, J. Inst. Met., 74 (1948), pp. 537–562.

    CAS  Google Scholar 

  32. J. Harder, Int. J. Plasticity, 15 (1999), pp. 605–624.

    Article  Google Scholar 

  33. M.E. Gurtin, J. Mechanics and Physics of Solids, 48 (2000), pp. 989–1036.

    Article  Google Scholar 

  34. A. Ma, F. Roters, and D. Raabe, Acta Mater., 54 (2006), pp. 2181–2194.

    Article  CAS  Google Scholar 

  35. Z. Zhao, M. Ramesh, D. Raabe, A. Cuitino, and R. Radovitzky, Int. J. Plast., 24 (2008), pp. 2278–2297.

    Article  CAS  Google Scholar 

  36. F. Siska, S. Forest, and P. Gumbsch, Computational Materials Science, 39 (2007), pp. 137–141.

    Article  CAS  Google Scholar 

  37. F. Siska, D. Weygand, S. Forest, and P. Gumbsch, Computational Materials Science, 45 (2009), pp. 793–799.

    Article  Google Scholar 

  38. T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe, Int. J. Plast., 25 (2009), pp. 1655–1683.

    Article  CAS  Google Scholar 

  39. E. Demir and D. Raabe, Acta Mater., 58 (2010), pp. 6055–6063.

    Article  CAS  Google Scholar 

  40. T. Walde, P. Gumbsch, and H. Riedel, Steel Research International, 77 (2006), pp. 741–746.

    CAS  Google Scholar 

  41. D. Raabe, Z. Zhao, S.-J. Park, and F. Roters, Acta Mater., 50 (2002), pp. 421–440.

    Article  CAS  Google Scholar 

  42. A. Reuss, Z. Angew Math. Mech., 9 (1929), pp. 49–58.

    Article  CAS  Google Scholar 

  43. W. Voigt, Wied. Ann., 38 (1889), pp. 573–587.

    Google Scholar 

  44. G.L. Taylor, J. Inst. Met., 62 (1938), pp. 307–324.

    Google Scholar 

  45. T.H. Lin, J. Mechanics and Physics of Solids, 5 (1957), pp. 143–149.

    Article  CAS  Google Scholar 

  46. J.D. Eshelby, Proc. Roy. Soc. Lond. A, 241 (1957), pp. 376–396.

    Article  Google Scholar 

  47. E. Kröner, Z. Phys., 151 (1958), pp. 504–518.

    Article  Google Scholar 

  48. T. Mori and K. Tanaka, Acta Metall., 21 (1973), pp. 571–574.

    Article  Google Scholar 

  49. R.A. Lebensohn and C.N. Tomé, Acta Metall. et Mater., 41 (1993), pp. 2611–2624.

    Article  CAS  Google Scholar 

  50. A. Prakash, T. Hochrainer, E. Reisacher, and H. Riedel, Steel Research International, 79 (2008), pp. 645–652.

    CAS  Google Scholar 

  51. M. Rodriguez Ripoll, E. Reisacher, and H. Riedel, Computational Materials Science, 45 (2009), pp. 788–792.

    Article  Google Scholar 

  52. H. Wang, P.D. Wu, C.N. Tomé, and Y. Huang, J. Mechanics and Physics of Solids, 58 (2010), pp. 594–612.

    Article  CAS  Google Scholar 

  53. P. Van Houtte, L. Delannay, and I. Samajdar, Texture Microstruct., 31 (1999), pp. 109–149.

    Article  Google Scholar 

  54. P. Van Houtte, S. Li, M. Seefeldt, and L. Delannay, Int. J. Plast., 21 (2005), pp. 589–624.

    Article  Google Scholar 

  55. C. Schäfer, J. Song, and G. Gottstein, Acta Mater., 57 (2009), pp. 1026–1034.

    Article  Google Scholar 

  56. P. Eisenlohr, D.D. Tjahjanto, T. Hochrainer, F. Roters, and D. Raabe, Int. J. Materials Research, 100 (2009), pp. 500–509.

    CAS  Google Scholar 

  57. T. Walde and H. Riedel, Mater. Sci. and Eng. A, 443 (2007), pp. 277–284.

    Article  Google Scholar 

  58. I. Tikhovskiy, D. Raabe, and F. Roters, Mater. Sci. Eng. A, 488 (2008), pp. 482–490.

    Article  Google Scholar 

  59. D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, and S. Zaefferer, Acta Mater., 49 (2001), pp. 3433–3441.

    Article  CAS  Google Scholar 

  60. A.J. Beaudoin, H. Mecking, and U.F. Kocks, Philos. Mag. A, 73 (1996), pp.1503–1517.

    Article  CAS  Google Scholar 

  61. M. Sachtleber, Z. Zhao, and D. Raabe, Mater. Sci. Eng. A, 336 (2002), pp. 81–87.

    Article  Google Scholar 

  62. J. Ocenasek, M. Rodriguez Ripoll, S.M. Weygand, and H. Riedel, Computational Materials Science, 39 (2007), pp. 23–28.

    Article  CAS  Google Scholar 

  63. R.A. Lebensohn, Acta Mater., 49 (2001), pp. 2723–2737.

    Article  CAS  Google Scholar 

  64. A. Prakash and R.A. Lebensohn, Model. Sim. Mater. Sci. Eng., 17 (2009), 064010.

    Article  Google Scholar 

  65. A. Butz, S. Lossau, B. Springub, and F. Roters, Int. J. Mater. Forming, 3(Suppl. 1) (2010), pp. 73–76.

    Article  Google Scholar 

  66. C. Yeong and S. Torquato, Phys. Rev. E, 57 (1998), pp. 495–506.

    Article  CAS  Google Scholar 

  67. D. Raabe, Ann. Rev. Mater. Res., 32 (2002), pp. 53–76.

    Article  CAS  Google Scholar 

  68. F. Barlat and J. Lian, Int. J. Plasticity, 5 (1989), pp. 51–56.

    Article  Google Scholar 

  69. S. Lossau and B. Svendsen, “Forming Simulations Based on Parameters Obtained in Microstructural Cold Rolling Simulations in Comparison to Conventional Forming Simulations” (Presented at the 7th LS-DYNA User Conference, Salzburg, Austria, 2009), C-I-01.

  70. F. Feukamm, M. Feucht, A. Haufe, and K. Roll, Proc. 7th Int. Conf. Numerical Simulation of 3D Sheet Metal Forming Processes (Zurich Switzerland: ETH Zurich, Institute of Virtual Metallurgy, 2008), pp. 805–810.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Helm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helm, D., Butz, A., Raabe, D. et al. Microstructure-based description of the deformation of metals: Theory and application. JOM 63, 26–33 (2011). https://doi.org/10.1007/s11837-011-0056-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0056-8

Keywords

Navigation