Skip to main content
Log in

Nanostructured metal composites reinforced with fullerenes

  • Nanocomposite Materials / Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work presents the results of the characterization of nanostructured Al or Fe matrix composites reinforced with fullerenes. The fullerene used is a mix of 15 wt%C60, 5 wt.%C70, and 80 wt.% soot that is the product of the primary synthesis of C60. The composites were produced by mechanical alloying and sintered by spark plasma sintering (SPS). It was found that in both composites, C60 withstands mechanical alloying, and acts as a control agent, reducing the agglomeration of the particles. In both composite systems the as-mechanically alloyed powders as well as the SPS sintered products are nanostructured. During the SPS process the effect of the metal (Al or Fe) matrix with the fullerene is different for each composite. For instance, Al reacts with all the carbon in the fullerene mix and forms Al4C3; on the contrary, in the Fe-fullerene composite, Fe sponsors the synthesis of C60 during the SPS process. The synthesis of the C60 is presumably assisted by the catalytic nature of Fe and the electric field generated during the SPS sintering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RJ.E Harris, Carbon Nanotubes and Related Structures (Cambridge; Cambridge University Press. 1999).

    Book  Google Scholar 

  2. H.W. Kroto et al., Nature, 318 (1985), p. 182.

    Article  ADS  Google Scholar 

  3. S. Iijima, Nature, 354 (1991), pp. 56–58.

    Article  CAS  ADS  Google Scholar 

  4. D. Ugarte, Nature, 359 (1992), pp. 707–709.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. H. Terrones and M. Terrenes, J. Phys. Chem. Solids, 58 (1997), pp. 1789–1796.

    Article  CAS  ADS  Google Scholar 

  6. W. Kratschmer et al., Nature, 347 (1990), pp. 354–358.

    Article  ADS  Google Scholar 

  7. F.C. Robles Hernandez (M.Sc. thesis, Institute Politecnico National, Mexico, 1999).

    Google Scholar 

  8. V. Garibay-Fables et al., Mater, and Manufae. Processes, 15 (2000), p. 547.

    Article  Google Scholar 

  9. E Adams and C. Vives, Netherlands Society for Materials Science, 1 (1997), p. 337.

    Google Scholar 

  10. D.M. Hulbert et al., Mater. Sci. and Eng. A, 488 (2008), pp. 333–338.

    Article  Google Scholar 

  11. U.S. Benjamin, New Materials by Mechanical Alloying Techniques, ed. E. Arzt and L. Schultz (Oberursel, Germany: DGM Informationgesellschaft, 1989), pp. 3–18.

    Google Scholar 

  12. C. Suryanarayana, Prog, in Mater. Sci., 46 (2001), pp. 1–184.

    Article  CAS  Google Scholar 

  13. M. Umemoto et al., Wafer. Sci. Fomm, 312–314 (1999), pp. 93–102.

    Google Scholar 

  14. I.Wei Chen and X.H. Wang, Nature, 404 (2000), pp. 168–171.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. R.L. Coble, J. Appl. Phys., 32 (1961), pp. 787–799.

    Article  CAS  ADS  Google Scholar 

  16. R.L. Coble and J.E. Burke, Progress in Ceramic Science, 3rd edition, ed. J.E. Burke (Newark; Wiley-American Ceramic Society, 1963), pp. 197–251.

    Google Scholar 

  17. R. Pérez-Bustamante et al., Mater. Sci. and Eng. A, 502 (2009), pp. 159–163.

    Article  Google Scholar 

  18. M. Oda et al., “Influence of Dispersed Carbon Nano-Fibers/Carbon Nano-Tubes in Al Matric Composite” (Paper presented at the TMS 2009 Annual Meeting and Exhibition, San Francisco, CA, 15–19 February 2009).

  19. J. Guerrero-Paz et al., Mater. Sci. Forum, 360–362 (2001), pp. 317–322.

    Article  Google Scholar 

  20. Kuzumaki et al., J. Mater. Res., 13 (1998), pp. 2445–2449.

    Article  CAS  ADS  Google Scholar 

  21. J.H. Hafner, Chem. Phys. Lett., 296 (1998), pp. 195–202.

    Article  CAS  ADS  Google Scholar 

  22. H. Dai et al., Cham. Phys. Lett., 260 (1996), p. 471.

    Article  CAS  ADS  Google Scholar 

  23. T. Gou et al., Chem. Phys. Lett., 243 (1995), p.49.

    Article  Google Scholar 

  24. W. Zhou et al., Chem. Phys. Lett., 350 (2001), p. 6.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco C. Robles-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robles-Hernández, F.C., Calderon, H.A. Nanostructured metal composites reinforced with fullerenes. JOM 62, 63–68 (2010). https://doi.org/10.1007/s11837-010-0034-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0034-6

Keywords

Navigation