Skip to main content
Log in

Cruciform-shaped specimens for elevated temperature biaxial testing of lightweight materials

  • Aluminum: Shaping and Forming
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A custom biaxial testing fixture was used to evaluate new cruciform geometries. Specimens consisting of AA5083, Mg AZ31B, and TWIP steel were quasi-statically deformed to failure at 300oC. We elucidate geometric differences between specimens that accumulate plastic deformation within their gauge areas and those that prematurely fracture. Strain fields are computed with digital image correlation for selected geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Lund and J.P. Byrne, “Leonardo Da Vinci’s Tensile Strength Tests: Implications for the Discovery of Engineering Mechanics,” Civil Eng. and Env. Syst., 00 (2000), pp. 1–8.

    Google Scholar 

  2. D.S. Gianola and C. Eberl, “Micro- and Nanoscale Tensile Testing of Materials,” JOM, 61(3) (2009), pp. 24–35.

    Article  Google Scholar 

  3. T. Foecke, S.W. Banovic, and R.J. Fields, “Sheet Metal Formability Studies at the National Institute of Standards and Technology,” JOM, 53(2) (2001), pp. 27–30.

    Article  CAS  Google Scholar 

  4. W.F. Hosford and J.L. Duncan, “Sheet Metal Forming: A Review,” JOM, 51(11) (1999), pp. 39–44.

    Article  Google Scholar 

  5. J.L. Duncan, J. Hu, and Z. Marciniak, Mechanics of Sheet Metal Forming, Second Edition (Woburn, MA: Butterworth-Heinemann, 2002).

    Google Scholar 

  6. E. Taleff et al., “The Effect of Stress State on High Temperature Deformation of Fine-Grained AA5083 Sheet,” Acta Materialia, 57 (2009), pp. 2812–2822.

    Article  CAS  Google Scholar 

  7. Y. Yu, M. Wan, and X. Zhou, “Design of a Cruciform Biaxial Tensile Specimen for Limit Strain Analysis by FEM,” J. Materials Processing Technology, 123 (2002), pp. 67–70.

    Article  Google Scholar 

  8. T. Naka et al., “Effects of Temperature on Yield Locus for 5083 Aluminum Alloy Sheet,” J. Materials Processing Technology, 140 (2003), pp. 494–499.

    Article  CAS  Google Scholar 

  9. Standard Test Methods for Tension Testing of Metallic Materials, Designation E 8/E 8M (ASTM, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA, 19428-2959).

  10. A. Samir et al., “Service-Type Creep-Fatigue Experiments with Cruciform Specimens and Modelling of Deformation,” International Journal of Fatigue, 28 (2006), pp. 643–651.

    Article  MATH  CAS  Google Scholar 

  11. C. Doudard et al., “Determination of an HCF Criterion by Thermal Measurements under Biaxial Cyclic Loading,” International Journal of Fatigue, 29 (2007), pp. 748–757.

    Article  CAS  Google Scholar 

  12. A. Makinde, L. Thibodeau, and K.W. Neale, “Development of an Apparatus for Biaxial Testing using Cruciform Specimens,” Experimental Mechanics, 32(2) (1992), pp. 138–144.

    Article  ADS  Google Scholar 

  13. T. Kuwabara, S. Ikeda, and K. Kuroda, “Measurement and Analysis of Differential Work Hardening in Cold-Rolled Steel Sheet under Biaxial Tension,” J. Materials Processing Technology, 80–81 (1998), pp. 517–523.

    Article  Google Scholar 

  14. D. Banabic et al., “Description of Anisotropic Behaviour of AA3103-0 Aluminium Alloy Using Two Recent Yield Criteria,” Journal De Physique. IV: JP, 105 (2003), pp. 297–304.

    Article  ADS  Google Scholar 

  15. D. Banabic et al., “An Improved Analytical Description of Orthotropy in Metallic Sheets,” International Journal of Plasticity, 21 (2005), pp. 493–512.

    Article  MATH  CAS  Google Scholar 

  16. M. Geiger et al., “Novel Concept of Experimental Setup for Characterization of Plastic Yielding of Sheet Metal at Elevated Temperatures,” Advanced Materials Research, 6–8 (2005), pp. 657–664.

    Article  Google Scholar 

  17. M. Geiger et al., “Experimental Determination of Yield Loci for Magnesium Alloy AZ31 under Biaxial Tensile Stress Conditions at Elevated Temperatures,” J. Product Engineering, 2(3) (2008), pp. 303–310.

    Article  Google Scholar 

  18. A. Ghiotti, S. Bruschi, and P. Bariani, “Determination of Yield Locus of Sheet Metal at Elevated Temperatures: A Novel Concept for Experimental Setup,” Key Engineering Materials, 344 (2007), pp. 97–104.

    Article  Google Scholar 

  19. P. Krajewski and J. Schroth, “Overview of Quick Plastic Forming,” Mat. Sci. Forum, 551–552 (2007), pp. 3–12.

    Article  Google Scholar 

  20. T. Kuwabara et al., “Modeling Anisotropic Behavior for Steel Sheets Using Different Yield Criteria,” Key Engineering Materials, 233–236 (2003), pp. 841–846.

    Article  Google Scholar 

  21. M. Merklein, W. Hußnätter, and M. Geiger, “Characterization of Yielding Behavior of Sheet Metal under Biaxial Stress Condition at Elevated Temperatures,” CIRP Annals—Manufacturing Technology, 57 (2008), pp. 267–274.

    Google Scholar 

  22. W. Müller, “Beitrag zur Charakterisierung von Blechwerkstoffen unter zweiachsiger Beanspruchung” (Ph.D. Thesis, University of Stuttgart, Springer-Verlag, 1996).

  23. W. Müller and K. Pöhlandt, “New Experiments for Determining Yield Loci of Sheet Metal,” J. Materials Processing Technology, 60 (1996), pp. 643–648.

    Article  Google Scholar 

  24. D. Green et al., “Experimental Investigation of the Biaxial Behavior of an Aluminum Sheet,” International Journal of Plasticity, 20 (2004), pp. 1677–1706.

    Article  MATH  CAS  Google Scholar 

  25. J. Gozzi, A. Olsson, and O. Lagerqvist, “Experimental Investigation of the Behavior of Extra High Strength Steel,” Experimental Mechanics, 45(6) (2005), pp. 533–540.

    Article  Google Scholar 

  26. S. Moondra and B. Kinsey, “Determination of Cruciform Specimen for Stress Based Failure Criterion,” Transactions of the NAMRI, 32 (2004), pp. 247–254.

    Google Scholar 

  27. Wolfgang Hußnätter, “Detection of Real Plastification in a Biaxial Tension Test,” Key Engineering Materials, 344 (2007), pp. 105–112.

    Article  Google Scholar 

  28. T. Naka et al., “Effects of Strain Rate, Temperature and Sheet Thickness on Yield Locus of AZ31 Magnesium Alloy Sheet,” J. Materials Processing Technology, 201 (2008), pp. 395–400.

    CAS  Google Scholar 

  29. F. Abu-Farha and M. Khraisheh, “Uniaxially-Driven Controlled Biaxial Testing Fixture” (U.S. patent application pending, filed May 2008).

  30. K. Siegert and S. Jäger, “Warm Forming of Magnesium Sheet Metal” (Warrendale, PA: Society of Automotive Engineers, 2004), Paper 2004-01-1043.

    Google Scholar 

  31. “Elektron AZ31B Sheet, Plate & Coil, Data Sheet: 482” (Magnesium Elektron UK, P.O. Box 23, Rake Lane, Swinton, Manchester, M27 8DD, England).

  32. P. Zavattieri et al., “Spatio-temporal Characteristics of the Portevin-Le Chatelier Effect in Austenitic Steel with Twinning Induced Plasticity,” Int. J. Plasticity (2009), published on-line doi:10.1016/j.ijplas.2009.02.008.

  33. P.A. Sherek, “Simulation and Experimental Investigation of Hot Gas-Pressure Forming for Light-Alloy Sheet Material” (M.S. Thesis, Mech. Eng. Dept. University of Texas-Austin, 2009).

  34. T. Hong et al., “Time-resolved Strain Measurements of Portevin-Le Chatelier Bands in Aluminum using a High Speed Digital Camera,” Scripta Mat., 53 (2005), pp. 87–92.

    Article  Google Scholar 

  35. V. Savic, L.G. Hector, Jr., and J.R. Fekete, “Digital Image Correlation Study of Plastic Deformation and Fracture in Fully Martensitic Steels,” Exp. Mech. (2008), published on-line, doi: 10.1007/s11340-008-9185-6.

  36. W. Tong et al., “Deformation and Fracture of Miniature Tensile Bars with Resistance Spot Weld Microstructures: An Application of Digital Image Correlation to Dual-phase Steels,” Met. Mat. Trans., A 36 (2005), pp. 2651–2669.

    Article  Google Scholar 

  37. W. Tong et al., “Local Plastic Deformation and Failure Behavior of ND:YAG Laser Welded AA5182-O and AA6111-T4 Aluminum Sheet Metals,” Metall. Mater. Trans., 38A (2007), pp. 3063–3086.

    Article  CAS  Google Scholar 

  38. W. Tong, “An Evaluation of Digital Image Correlation Criteria for Strain Mapping Applications,” Strain, 41 (2005), pp. 167–175.

    Article  Google Scholar 

  39. M. Sutton et al., “Effect of Subpixel Image Restoration on Digital Correlation Error Estimates,” Opt. Eng., 27 (1998), pp. 870–877.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Abu-Farha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu-Farha, F., Hector, L.G. & Khraisheh, M. Cruciform-shaped specimens for elevated temperature biaxial testing of lightweight materials. JOM 61, 48–56 (2009). https://doi.org/10.1007/s11837-009-0121-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0121-8

Keywords

Navigation