Skip to main content
Log in

The evolution of diffusion barriers in copper metallization

  • Research Summary
  • Phase Studies in Electronic Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Refractory metal nitride thin films have been widely developed as the diffusion barriers for the aluminum or copper interconnects in integrated circuits. This study reviewed the evolution of diffusion barriers in copper metallization. First, materials characteristics and electrical properties of various diffusion barriers, titanium nitride (TiN), tantalum nitride (TaN), and titanium zirconium nitride (TiZrN), were examined. These diffusion barriers were prepared by reactive magnetron sputtering in N2/Ar gas mixtures. Next, barrier performance was evaluated by annealing the Cu/barrier/Si systems at 400–1,000°C for 60 min. in vacuum as well as the measurements of copper diffusion coefficients. The results suggest that TiZrN films can be used as a diffusion barrier for copper metallization better than the well-known TaN films. Therefore, the evolution of diffusion barriers in copper metallization, from TiN to TaN and then from TaN to TiZrN, is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. International Technology Roadmap for Semiconductors-2004 Update (Semiconductor Industry Association, 2004), p. 7; http://public.itrs.net/.

  2. J.D. Plummer, M.D. Deal, and P.B. Griffin, Silicon VLSI Technology (Upper Saddle River, NJ: Prentice Hall, 2000), p. 695.

    Google Scholar 

  3. Y.S. Diamand et al., Proc. 9 Bienn. Univ. Gov. Ind. Microelectron. Symp. (Piscataway, NJ: IEEE, 1991), pp. 210–215.

    Book  Google Scholar 

  4. J.O. Olowolafe, J. Li, and J.W. Mayer, Applied Surface Science, 58 (1991), p. 469.

    CAS  Google Scholar 

  5. Y.S. Gong, J.C. Lin, and C. Lee, Applied Surface Science, 92 (1996), p. 335.

    Article  CAS  Google Scholar 

  6. M. Moriyama et al., Thin Solid Films, 416 (2002), p. 136.

    Article  CAS  Google Scholar 

  7. P.J. Pokela et al., Applied Surface Science, 53 (1991), p. 364.

    Article  CAS  Google Scholar 

  8. M.B. Takeyama et al., Applied Surface Science, 190 (2002), p. 450.

    Article  CAS  Google Scholar 

  9. X. Sun et al., Thin Solid Film, 236 (1993), p. 347.

    Article  CAS  Google Scholar 

  10. J.C. Lin, G. Chen, and C. Lee, J. Electrochem. Soc., 146 (1999), p. 1835.

    Article  CAS  Google Scholar 

  11. T. Oku et al., Applied Surface Science, 99 (1996), p. 265.

    Article  CAS  Google Scholar 

  12. O. Knotek, M. Bohmer, and T. Leyendecker, J. Vac. Sci. Technol., A4 (1986), p. 2695.

    ADS  Google Scholar 

  13. O. Knotek et al., Mat. Sci. Eng., A105/106 (1988), p. 481.

    Article  Google Scholar 

  14. P. Duwez and F. Odell, J. Electrochem. Soc., 97 (1950), p. 299.

    CAS  Google Scholar 

  15. Y.L. Kuo et al., Electrochemical and Solid-State Letters, 7(3) (2004), pp. C35–C37.

    Article  CAS  Google Scholar 

  16. C.K. Hu and J.M.E. Harper, Mater. Chem. Phys., 52 (1998), p. 5.

    Article  ADS  CAS  Google Scholar 

  17. “Powder Diffraction File” (Philadelphia, PA: Joint Committee on Powder Diffraction Standards of ASTM, 1996), Card 38-1420.

  18. “Powder Diffraction File” (Philadelphia, PA: Joint Committee on Powder Diffraction Standards of ASTM, 1996), Card 32-1284.

  19. L.E. Thod, Transition Metal Carbides and Nitrides (New York: Academic, 1971).

    Google Scholar 

  20. Y.L. Kuo et al., J. Electrochem. Soc., 151(3) (2003), p. C176.

    Article  Google Scholar 

  21. P.E. Schmid, M.S. Sunaga, and F. Lévy, J. Phys. Chem. Solids, 30 (1969), p. 1835.

    Article  Google Scholar 

  22. W.D. Callister, Jr., Fundamentals of Materials Science and Engineering (New York: Wiley, 2001).

    Google Scholar 

  23. Y.L. Kuo et al., Mater. Chem. Phys., 80(3) (2003), p. 690.

    Article  CAS  Google Scholar 

  24. “Powder Diffraction File” (Philadelphia, PA: Joint Committee on Powder Diffraction Standards of ASTM, 1996), Card 23-224.

  25. J.S. Chen and J.L. Wang, J. Electrochem. Soc., 147(5) (2000), p. 1940.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C., Kuo, YL. The evolution of diffusion barriers in copper metallization. JOM 59, 44–49 (2007). https://doi.org/10.1007/s11837-007-0009-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-007-0009-4

Keywords

Navigation