Skip to main content
Log in

Study of the Electrical and Diffusion Barrier Properties in Ultrathin Carbon Film-Coated Copper Microwires for Interconnects

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Four specimen patterns with the microstructure of a microcopper wire are deposited on the Si-wafer substrate plus thermal oxide (SiO2) film as the top layer. Each pattern was prepared to have two kinds of specimens, including with and without ultrathin carbon film between the copper wire and the top layer (SiO2). The effect of carbon film on electrical properties is evaluated via the measurements of the I (current)–V (voltage) curve, sheet electrical resistance, current leakage, and its ratio and effective permittivity. A rapid thermal annealing (RTA) technique is provided as an economic and efficient method to grow the ultrathin carbon film rapidly as the interlayer. Appropriate choices of 900 °C and 3 min as the annealing temperature and time can produce ultrathin carbon film with nearly 100% coverage of the copper surface. The sheet resistance of specimen demonstrates the behavior exactly opposite to that of the carbon film coverage of wire surface. The combined effect of elevating the voltage and annealing temperature of the specimen with carbon film on the current leakage is much lower than that arising in the specimen without carbon film, so long as the carbon films operating at that temperature (between 350 and 500 °C) are still sustainable. The differences in current leakage and effective permittivity between these two kinds of specimen are significantly increased by raising the temperature. The intensity (IC) of copper diffusions into the SiO2 layer in the specimens with the carbon film demonstrates behavior similar to that of current leakage (CL). The IC and CL values for the temperatures ≦ 350 °C are much lower than those obtained at 500 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, A Roadmap for Graphene, Nature, 2012, 490, p 192–200

    Article  Google Scholar 

  2. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamkann, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films On Copper Foils, Science, 2009, 324, p 1312–1314

    Article  Google Scholar 

  3. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Ultrahigh Electron Mobility in Suspended Graphene, Solid State Commun., 2008, 146, p 351–355

    Article  Google Scholar 

  4. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, and A.K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett., 2008, 100, p 016602

    Article  Google Scholar 

  5. C. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, 321, p 385–388

    Article  Google Scholar 

  6. A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8, p 902–907

    Article  Google Scholar 

  7. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater., 2010, 22, p 3906–3924

    Article  Google Scholar 

  8. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J.M. Tour, Growth of Graphene from Solid Carbon Sources, Nature, 2010, 468, p 549–552

    Article  Google Scholar 

  9. M. Zhang, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y.L. Chueh, Y. Zhang, R. Maboudian, and A. Javey, Metal-Catalyzed Crystallization of Amorphous Carbon to Graphene, Appl. Phys. Lett., 2010, 96, p 063110-1–063110-3

    Google Scholar 

  10. H. Ji, Y. Hou, Y. Ren, M. Charlton, W.H. Lee, Q. Wu, H. Li, Y. Zhu, Y. Wu, R. Piner, and R.S. Ruoff, Graphene Growth Using a Solid Carbon Feedstock and Hydrogen, ACS Nano, 2011, 5(9), p 7656–7661

    Article  Google Scholar 

  11. Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, Z. Zhai, C. Zeng, Z. Li, J. Yang, and J. Hou, Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources, ACS Nano, 2011, 5(4), p 3385–3390

    Article  Google Scholar 

  12. N. Liu, L. Fu, B. Dai, K. Yan, X. Liu, R. Zhao, Y. Zhang, and Z. Liu, Universal Segregation Growth Approach to Wafer-Size Graphene from Non-noble Metals, Nano Lett., 2011, 11, p 297–303

    Article  Google Scholar 

  13. S.M. Kim, A. Hsu, Y.H. Lee, M. Dresselhaus, T. Palacios, K.K. Kim, and J. Kong, The Effect of Copper Pre-cleaning on Graphene Synthesis, Nanotechnology, 2013, 24, p 365602–365608

    Article  Google Scholar 

  14. A. Iamach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zhang, A. Javey, J. Bokor, and Y. Zhang, Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces, Nano Lett., 2010, 10, p 1542–1548

    Article  Google Scholar 

  15. M. Levendorf, C. Ruiz-Vargas, S. Garg, and J. Park, Transfer-Free Batch Fabrication of Single Layer Graphene Transistors, Nano Lett., 2009, 9(12), p 4479–4483

    Article  Google Scholar 

  16. A. Pratt, Overview of the Use of Copper Interconnects in the Semiconductor Industry, Adv. Ener. Ind., 2004. p 1–20

  17. M.R. Baklanov, C. Adelmann, L. Zhao, and S. De Gendt, Advanced Interconnects: Materials, Processing, and Reliability, J. Solid State Sci. Technol., 2015, 4(1), p Y1–Y4

    Article  Google Scholar 

  18. Q. Hung, C.M. Lilley, M. Bode, and R. Divan, Surface and Size Effects on the Electrical Properties of Cu Nanowires, J. Appl. Phys., 2008, 104, p 023709–023714

    Article  Google Scholar 

  19. R.L. Graham, G.B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R.H. Geiss, D.T. Read, and S. Peddeti, Resistivity Dominated by Surface Scattering in Sub-50Nm Cu Wires, Appl. Phys. Lett., 2010, 96, p 042116–042118

    Article  Google Scholar 

  20. S. Reich and C. Thomsen, Raman Spectroscopy of Graphite, Philos. Trans. R. Soc. A, 2004, 362(1824), p 2271–2288

    Article  Google Scholar 

  21. M.S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman Spectroscopy of Carbon Nanotubes, Phys. Rep., 2005, 409(2), p 47–99

    Article  Google Scholar 

  22. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 2006, 97(18), p 187401-1–187401-4

    Article  Google Scholar 

  23. J. Hodkiewicz, Characterizing Graphene with Raman Spectroscopy, Therm. Sci. Appl., 2010, p 51946

  24. T.K.S. Wong, Time Dependent Dielectric Breakdown in Copper Low-k Interconnects: Mechanisms and Reliability Models, Materials, 2012, 5, p 1602–1625

    Article  Google Scholar 

  25. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed., Wiley, Hoboken, 2006

    Book  Google Scholar 

  26. W. Hume-Rothery and H.M. Powell, On the Theory of Super-Lattice Structures in Alloys Zeitschrift für Kristallographie-Crystalline Materials, 1935, 91(1), p 23–47

  27. C.S. Chang, T.C. Li, Y.C. Tsai, G.H. Wu, and J.F. Lin, Effects of Deposition Method and Conditions for IGZO Film and Thermal Annealing on Composite Film Quality, Surface Roughness, Microstructural Defects, and Electrical Properties of Ti/IGZO/Graphene/Polyimide Specimens, J. Alloys Compd., 2018, 768, p 298–315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Fin Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CS., Wang, DJ., Li, TC. et al. Study of the Electrical and Diffusion Barrier Properties in Ultrathin Carbon Film-Coated Copper Microwires for Interconnects. J. of Materi Eng and Perform 28, 2292–2304 (2019). https://doi.org/10.1007/s11665-019-03976-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-03976-6

Keywords

Navigation