Skip to main content
Log in

Mapping mechanical properties on the nanoscale using atomic-force acoustic microscopy

  • Overview
  • Scanning Probe Microscopy for Materials Science
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Tools are being developed that use the atomic-force microscope (AFM) to measure mechanical properties with nanoscale spatial resolution. Contact-resonance-spectroscopy techniques such as atomic-force acoustic microscopy involve the vibrational modes of the AFM cantilever when its tip is in contact with a material. These methods enable quantitative maps of local mechanical properties such as elastic modulus and thin-film adhesion. The information obtained furthers the understanding of patterned surfaces, thin films, and nanoscale structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Instrumentation and Metrology for Nanotechnology, Report of the National Nanotechnology Initiative Workshop (27–29 January 2004, Gaithersburg, MD); available at www.nano.gov/NNI_Instrumentation_Metrology_rpt.pdf" Key=".

  2. W.C. Oliver and G.M. Pharr, J. Mater. Res., 7(6) (1992), pp. 1564–1583.

    ADS  CAS  Google Scholar 

  3. S.A. Syed Asif et al., J. Appl. Phys., 90(3) (2001), pp. 1192–1200.

    Article  ADS  CAS  Google Scholar 

  4. O. Kraft and C.A. Volkert, Adv. Engng. Mater., 3(3) (2001), pp. 99–110.

    Article  CAS  Google Scholar 

  5. A.G. Every, Meas. Sci. Technol., 13(5) (2002), pp. R21–R39.

    Article  ADS  CAS  Google Scholar 

  6. G. Binning et al., Phys. Rev. Lett., 56(9) (1986), pp. 930–933.

    Article  ADS  Google Scholar 

  7. P. Maivald et al., Nanotechnology, 2(2) (1991), pp. 103–106.

    Article  ADS  Google Scholar 

  8. M. Troyon et al., Nanotechnology, 8(4) (1997), pp. 1630–171.

    Article  Google Scholar 

  9. N.A. Burnham et al., J. Vac. Sci. Technol. B., 14(2) (1996), pp. 794–799.

    Article  CAS  MathSciNet  Google Scholar 

  10. A. Rosa-Zeiser et al., Meas. Sci. Technol., 8(11) (1997), pp. 1333–1338.

    Article  ADS  CAS  Google Scholar 

  11. Q. Zhong et al., Surface Science, 290(1–2) (1993), pp. L688–L692.

    Article  CAS  Google Scholar 

  12. R.E. Geer et al., J. Appl. Phys., 91(7) (2002), pp. 4549–4555.

    Article  ADS  CAS  Google Scholar 

  13. M.T. Cuberes et al., J. Phys. D: Appl. Phys., 33(19) (2000), pp. 2347–2355.

    Article  ADS  CAS  Google Scholar 

  14. K. Yamanaka et al., Appl. Phys. Lett., 78(13) (2001), pp. 1939–1941.

    Article  ADS  CAS  Google Scholar 

  15. U. Rabe et al., J. Phys. D: Appl. Phys., 35(20) (2002), pp. 2621–2635.

    Article  ADS  CAS  Google Scholar 

  16. K. Yamanaka and S. Nakano, Appl. Phys., A 66(1) (1998), pp. S313–S317.

    Article  ADS  CAS  Google Scholar 

  17. K.B. Crozier et al., Appl. Phys. Lett., 76(14) (2000), pp. 1950–1952.

    Article  ADS  CAS  Google Scholar 

  18. D.C. Hurley et al., J. Appl. Phys., 94(4) (2003), pp. 2347–2354.

    Article  ADS  CAS  Google Scholar 

  19. U. Rabe et al., Ultrasonics, 38(1–8) (2000), pp. 430–437.

    Article  CAS  Google Scholar 

  20. U. Rabe, “Atomic Force Acoustic Microscopy,” Applied Scanning Probe Methods II, ed. B. Bushan and H. Fuchs (New York: Springer, 2006), pp. 37–90.

    Chapter  Google Scholar 

  21. R. Arinero and G. Lévêque, Rev. Sci. Instr., 74(1) (2003), pp. 104–111.

    Article  ADS  CAS  Google Scholar 

  22. K.L. Johnson, Contact Mechanics (Cambridge, U.K.: Cambridge University Press, 1985), pp. 84–99.

    MATH  Google Scholar 

  23. J.J. Vlassak and W.D. Nix, Phil. Mag. A, 67(5) (1993), pp. 1045–1056.

    Google Scholar 

  24. U. Rabe et al., Surf. Interface Anal., 33(2) (2002), pp. 65–70.

    Article  CAS  Google Scholar 

  25. M. Prasad et al., Geophys. Res. Lett., 29(8) (2002), pp. 1172 1–4.

    Article  Google Scholar 

  26. K. Yamanaka et al., Rev. Sci. Instr., 71(6) (2000), pp. 2403–2408.

    Article  ADS  CAS  Google Scholar 

  27. D.C. Hurley et al., Meas. Sci. Technol., 16(11) (2005), pp. 2167–2172.

    Article  CAS  Google Scholar 

  28. M. Kopycinska-Müller et al., Nanotechnology, 16(6) (2005), pp. 703–709.

    Article  ADS  Google Scholar 

  29. D. Passeri et al., Rev. Sci. Instr., 76(9) (2005), pp. 093904 1–6.

    Article  Google Scholar 

  30. M. Kopycinska-Müller et al., Ultramicroscopy, 106(6) (2006), pp. 466–474.

    Article  PubMed  Google Scholar 

  31. D.C. Hurley et al., Appl. Surf. Sci., 253(3) (2006) pp. 1274–1281.

    Article  ADS  CAS  MathSciNet  Google Scholar 

  32. U. Rabe et al., J. Vac. Sci. Technol. B, 15(4) (1997), pp. 1506–1511.

    Article  CAS  Google Scholar 

  33. T. Tsuji and K. Yamanaka, Nanotechnology, 12(3) (2001), pp. 301–307.

    Article  ADS  CAS  Google Scholar 

  34. D. Passeri et al., Appl. Phys. Lett., 88(12) (2006), pp. 121910 1–3.

    Article  Google Scholar 

  35. T. Tsuji et al., Appl. Phys. Lett., 87(7) (2005), pp. 071909 1–3.

    Article  Google Scholar 

  36. D.C. Hurley et al., Appl. Phys. Lett., 89(2) (2006), pp. 021911 1–3.

    Article  Google Scholar 

  37. Y. Zheng et al., J. Appl. Phys., in press (2006).

  38. A.F. Sarioglu et al., Appl. Phys. Lett., 84(26) (2004), pp. 5368–5370.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurley, D.C., Kopycinska-Müller, M. & Kos, A.B. Mapping mechanical properties on the nanoscale using atomic-force acoustic microscopy. JOM 59, 23–29 (2007). https://doi.org/10.1007/s11837-007-0005-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-007-0005-8

Keywords

Navigation