Skip to main content
Log in

Modeling the dislocation properties and mechanical behavior of Ir, Rh, and their refractory alloys

  • Overview
  • High-Temperature Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

While interest is growing in iridiumand rhodium-based refractory alloys as new materials for ultra-high-temperature applications, very little is known about the fundamental factors controlling their mechanical properties. Experimental difficulties with in-situ investigations of these alloys emphasize the need for theoretical modeling as an important tool for accelerated progress in this field. This article presents results of an investigation of the brittle/ductile behavior and dislocation properties in iridium, rhodium, and their L12 intermetallic alloys based on first-principles total energy calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yamabe-Mitaral et al., JOM, 56 (9) (2004), pp. 34–39.

    Article  Google Scholar 

  2. D.G. Backman and J.C. Williams, Science, 255 (1992), pp. 1082–1087.

    Article  CAS  Google Scholar 

  3. D.P. Pope, Physical Metallurgy, ed. R.W. Cahn and P. Haasen (Elsevier, Amsterdam, 1996), v. III, pp. 2075–2104.

    Google Scholar 

  4. Y. Yamabe-Mitarai et al., Metall. Mater. Trans. A, 29 (1998), pp. 537–548.

    Article  Google Scholar 

  5. X.H. Yu et al., Intermetallics, 8 (2000), pp. 619–622.

    Article  Google Scholar 

  6. Y.F. Gu, Y. Yamabe-Mitarai, and H. Harada, Intermetallics, 11 (2003), pp. 57–62.

    Article  CAS  Google Scholar 

  7. S. Miura et al., Intermetallics, 8 (2000), pp. 785–791.

    Article  CAS  Google Scholar 

  8. Y.F. Gu et al., Mater. Sci. Eng. A, 329 (2002), pp. 262–267.

    Article  Google Scholar 

  9. C.A. Brookes, J.H. Greenwood, and J.L. Routbort, J. Inst. of Metals, 98 (1970), pp. 27–31.

    CAS  Google Scholar 

  10. B.L. Mordike and C.A. Brookes, Platinum Metals Rev., 4 (1960), pp. 94–99.

    Google Scholar 

  11. P. Panfilov and A. Yermakov, Int. J. Fracture., 128 (2004), pp. 147–151.

    Article  CAS  Google Scholar 

  12. P. Haasen, H. Hieber, and B.L. Mordike, Z. Metallkunde, 56 (1965), pp. 832–841.

    CAS  Google Scholar 

  13. C.N. Reid and J.L. Routbort, Metall. Trans., 3 (1972), pp. 2257–2260.

    Article  CAS  Google Scholar 

  14. Y.N. Gornostyrev et al., Phys. Rev. B, 62 (2000), pp. 7802–7808.

    Article  CAS  Google Scholar 

  15. E.G. Brovman and Yu. M. Kagan, Sov. Phys. Uspekhi, 17 (1974), pp. 125–152.

    Article  Google Scholar 

  16. J.R. Rice and R. Thomson, Phil. Mag., 29 (1974), pp. 73–97.

    CAS  Google Scholar 

  17. P. Veyssiere and G. Saada, in Dislocations in Solids, ed. F.R.N. Nabarro and M.S. Duesbery (Elsevier, Amsterdam, 1996), vol. 10, pp. 254–441.

    Google Scholar 

  18. O.N. Mryasov, Yu.N. Gornostyrev, and A.J. Freeman, Phys. Rev. B, 58 (1998), pp. 11927–11932.

    Article  CAS  Google Scholar 

  19. O.N. Mryasov et al., Acta Mater., 50 (2002), pp. 4545–4554.

    Article  CAS  Google Scholar 

  20. V. Vitek, Crystal Lattice Defects, 5 (1974), pp. 1–34.

    CAS  Google Scholar 

  21. E. Wimmer et al., Phys. Rev. B, 24 (1981), pp. 864–875.

    Article  CAS  Google Scholar 

  22. C.T. Liu, Int. Metall. Rev., 29 (1984), pp. 168–194.

    CAS  Google Scholar 

  23. W. Lin, J.-H. Xu, and A.J. Freeman, Phys. Rev. B, 45 (1992), pp. 10863–10871.

    Article  CAS  Google Scholar 

  24. J.-H. Xu, W. Lin, and A.J. Freeman, Phys. Rev. B, 48 (1993), pp. 4276–4286.

    Article  CAS  Google Scholar 

  25. V. Paidar, D.P. Pope, and V. Vitek, Acta Metall., 32 (1984), pp. 435–448.

    Article  CAS  Google Scholar 

  26. Y. Yamabe-Mitarai et al. Phil. Mag. Lett., 79 (1999), pp. 673–682.

    Article  CAS  Google Scholar 

  27. D.M. Wee and T. Suzuki, Trans. JIM, 20 (1979), pp. 634–646.

    CAS  Google Scholar 

  28. A.M. Gyurko and J.M. Sanchez, Mater. Sci. Eng. A, 170 (1993), pp. 169–175.

    Article  Google Scholar 

  29. Y. Yamabe-Mitarai, Y. Ro, and S. Nakazawa, Intermetallics, 9 (2001), pp. 423–429.

    Article  CAS  Google Scholar 

  30. S. Miura et al., Intermetallics, 8 (2000), pp. 785–791.

    Article  CAS  Google Scholar 

  31. A.N. Gubbi et al., Metall. Mater. Trans. A, 28 (1997), pp. 2049–2057.

    Article  Google Scholar 

  32. Y.F. Gu et al., Metall. Mater. Trans. A, 30 (1999), pp. 2629–2639.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Oleg Y. Kontsevoi, Northwestern University, Department of Physics and Astronomy, 2145 N. Sheridan Road, Room F251, Evanston, IL 60208-3112; (847) 491-8637; fax (847) 491-5082; e-mail ok@mars.phys.northwestern.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kontsevoi, O.Y., Gornostyrev, Y.N. & Freeman, A.J. Modeling the dislocation properties and mechanical behavior of Ir, Rh, and their refractory alloys. JOM 57, 43–47 (2005). https://doi.org/10.1007/s11837-005-0232-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-005-0232-9

Keywords

Navigation