Skip to main content
Log in

Nanosized metal clusters: Challenges and opportunities

  • Overview
  • Nanoscale Surfaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article presents challenges and opportunities to control the microstructure in nanostructured coatings using ananocluster source. The cluster size distribution is monodisperse and the kinetic energy of the clusters during deposition can be varied. Interestingly, the clusters are grown in extreme non-equilibrium conditions leading to metastable structures of metals and alloys. Because one avoids the effects of nucleation and growth on a specific substrate, one may tailor the properties of the films by choosing the appropriate preparation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.A. Ovid’ko, Science, 295 (2002), p. 2386.

    Article  CAS  Google Scholar 

  2. M.Yu. Gutkin, I.A. Ovid’ko, and C.S. Pande, Nanoclusters and Nanocrystals, ed. H.S. Nalwa (Stevenson Ranch, California: Amer. Sci. Pub., 2003), p. 255.

    Google Scholar 

  3. S. Veprek and Ali S. Argon, Journal of Vacuum Science Technology B, 20 (2002), p. 650.

    Article  CAS  Google Scholar 

  4. K.J. Van Vliet et al., Phys. Rev. B, 67 (2003), p. 104, 105; and J.R. Weertman et al., MRS Bulletin, 24 (1999), p. 44.

    Article  Google Scholar 

  5. H. Haberland et al., Surface Review and Letters, 3 (1996), pp. 887–890.

    Article  CAS  Google Scholar 

  6. C.G. Granqvist and R.A. Buhrman, Journal of Applied Physics, 47 (1976), pp. 2200–2219.

    Article  CAS  Google Scholar 

  7. For main reviews in the field see also: C. Binns, Surface Science Rep, 44 (2001), p. 1; W. Eberhardt, Surface Science, 500 (2002), p. 242; P. Jenssen, Review of Modern Physics, 71 (1999), p. 1695; P. Melinon et al., Int. Journal of Modern Physics B, 9 (1995), p. 339.

    Article  CAS  Google Scholar 

  8. T. Vystavel et al., Applied Physics Letters, 82 (2003), pp. 197–200.

    Article  CAS  Google Scholar 

  9. G. Palasantzas, S.A. Koch, and J.Th.M. De Hosson, Applied Physics Letters, 81 (2002), p. 1089.

    Article  CAS  Google Scholar 

  10. D. Yao et al., Nanostructured Materials, 6 (1995), pp. 933–936.

    Article  Google Scholar 

  11. Y.Y. Chen et al., Physical Review Letters, 84 (200), pp. 4990–4993.

  12. J.F. Löffler, H.-B. Braun, and W. Wagner, Physical Review Letters, 85 (2000), pp. 1990–1993.

    Article  Google Scholar 

  13. C. Binns et al., physica status solidi (a), 189 (2002), pp. 339–350.

    Article  CAS  Google Scholar 

  14. S. Gangopadhyayetal., Journal of Applied Physics, 70 (1991), pp. 5888–5890.

    Article  Google Scholar 

  15. W. Gong et al., Journal of Applied Physics, 69 (1991), pp. 5119–5121.

    Article  CAS  Google Scholar 

  16. S. Gangopadhyay et al., Physical Review B, 45 (1992), pp. 9778–9787.

    Article  CAS  Google Scholar 

  17. S. Gangopadhyay et al., Journal of Applied Physics, 73 (1993), pp. 6964–6966.

    Article  CAS  Google Scholar 

  18. F. Bødker, S. Mørup, and S. Linderoth, Physical Review Letters, 72 (1994), pp. 282–285.

    Article  Google Scholar 

  19. M. Holdenried, B. Hackenbroich, and H. Micklitz, Journal of Magnetism and Magnetic Materials, 231 (2001), pp. L13-L19.

    Article  CAS  Google Scholar 

  20. Y.D. Yao et al., Nanostructured Materials, 6 (1995), pp. 933–936.

    Article  Google Scholar 

  21. V. Dupuis et al., Journal of Applied Physics, 76 (1994), pp. 6676–6678.

    Article  CAS  Google Scholar 

  22. M.D. Upward et al., Journal of Vacuum Science & Technology B, 18 (2000), pp. 2646–2649.

    Article  CAS  Google Scholar 

  23. N.A. Besley et al., Journal of Molecular Structure (THEOCHEM), 341 (1995), pp. 75–90.

    Article  CAS  Google Scholar 

  24. D. Wolf, Philosophical Magazine A, 63 (1991), pp. 337–361.

    Google Scholar 

  25. M.J.S. Spencer et al., Surface Science, 513 (2002), pp. 389–398.

    Article  CAS  Google Scholar 

  26. J. Zhao, X. Chen, and G. Wang, Physics Letters A, 214 (1996), pp. 211–214.

    Article  CAS  Google Scholar 

  27. A. Berces et al., Journal of Chemical Physics, 108 (1998), pp. 5476–5490.

    Article  CAS  Google Scholar 

  28. V. Kumar and Y. Kawazoe, Physical Review B, 65 (2002), p. 125403.

    Article  Google Scholar 

  29. A.S. Edelstein and R.C. Cammarata, editors, Nanomaterials: Synthesis, Properties and Application (Bristol, U.K.: Institute of Physics Publishing, 1998).

    Google Scholar 

  30. M. Petrucci et al., Journal of Applied Physics, 63 (1988), pp. 900–909.

    Article  CAS  Google Scholar 

  31. J.E. Macintyre, editor, Dictionary of Inorganic Compounds, volumes 1–3 (London: Chapman & Hall, 1992).

    Google Scholar 

  32. P. Buffat and J.-P. Borel, Physical Review A, 13 (1976), pp. 2287–2298.

    Article  CAS  Google Scholar 

  33. M. Schmidt and H. Haberland, Comptes Rendus Physique, 3 (2002), pp. 327–340.

    Article  Google Scholar 

  34. L.J. Lewis, P. Jensen, and J.-L. Barrat, Physical Review B, 56 (1997), pp. 2248–2257.

    Article  CAS  Google Scholar 

  35. P. Jensen, Reviews of Modern Physics, 71 (1999), pp. 1695–1735.

    Article  CAS  Google Scholar 

  36. C.R. Stoldt et al., Physical Review Letters, 81 (1998), pp. 2950–2953.

    Article  CAS  Google Scholar 

  37. F.A. Nichols and W.W. Mullins, Journal of Applied Physics, 36 (1965), p. 1826.

    Article  Google Scholar 

  38. T. Vystavel et al., Applied Physics Letters, 83 (2003), p. 9309.

    Article  Google Scholar 

  39. M. Moseler et al., Nuclear Instruments and Methods in Physics Research B, 164–165 (2000), p. 522.

    Article  Google Scholar 

  40. R. Buzio et al., Surface Science, 444 (2000), p. L1.

  41. D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces, Revised Edition (New York: Oxford University Press, 1994).

    Google Scholar 

  42. G.L. Hornyak et al., Micron, 29 (1998), p. 183.

    Article  Google Scholar 

  43. R.M. German, Sintering Theory and Practice (New York: Wiley, 1996), p. 100.

    Google Scholar 

  44. A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials (New York: Oxford University Press, 1995), pp. 792–793.

    Google Scholar 

  45. D.J. Eaglesham et al., Physics Review Letters, 70 (1993), p. 1643.

    Article  CAS  Google Scholar 

  46. C. G. Zimmermann et al., Physics Review Letters, 83 (1999), p. 1163.

    Article  CAS  Google Scholar 

  47. Y.P. Zhao, G.-C. Wang, and T.-M. Lu, Experimental Methods in the Physical Science: Vol. 37—Characterization of Amorphous and Crystalline Rough Surfaces-Principles and Applications (New York: Academic Press, 2000).

    Google Scholar 

  48. P. Meakin, Fractals, Scaling, and Growth Far from Equilibrium (Cambridge, U.K.: Cambridge University Press, 1998).

    Google Scholar 

  49. J. Krim and G. Palasantzas, Int. Journal of Modern Physics B, 9 (1995), p. 599.

    Article  CAS  Google Scholar 

  50. J.-J Aué and J.Th.M. De Hosson, Applied Physics Letters, 71 (1997), p. 1347.

    Article  Google Scholar 

  51. M. Kardar, G. Parisi, and Y.C. Zhang, Physics Review Letters, 56 (1986), p. 889.

    Article  CAS  Google Scholar 

  52. T. Halpin-Heally, Physics Rep., 254 (1995), p. 215; M. Forest and L.-H. Tang, Physics Review Letters, 64 (1991), p. 1405.

    Article  Google Scholar 

  53. W.E. Wolf and J. Villain, Europhysics Letters, 13 (1990), p. 389.

    CAS  Google Scholar 

  54. Z.-W. Lai and S. Das Sarma, Physics Review Letters, 66 (1991), p. 2348.

    Article  Google Scholar 

  55. D. Kashchiev, Surface Science, 55 (1976), p. 477; B. Lewis, Surface Science, 21 (1970), p. 289.

    Article  CAS  Google Scholar 

  56. H. Haberland et al., Journal of Vacuum Science Technology A, 10 (1992), p. 3266; H. Haberland et al., Nuclear instruments & Methods Physics Research Section B, 80/81 (1993), p. 1320.

    Article  CAS  Google Scholar 

  57. I. Yamada, Nuclear Instruments & Methods B, 55 (1991), p. 544.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Jeff Th.M. De Hosson, University of Groningen, Department of Applied Physics, Materials Science Center and Netherlands Institute for Metals Research, Nijenborgh 4,9747 AG Groningen, The Netherlands; +31-503-63-4898; fax +31-503-63-4881; e-mail hossonj@phys.rug.nl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Hosson, J.T.M., Palasantzas, G., Vystavel, T. et al. Nanosized metal clusters: Challenges and opportunities. JOM 56, 40–45 (2004). https://doi.org/10.1007/s11837-004-0271-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-004-0271-7

Keywords

Navigation