Skip to main content
Log in

New insights into the morphological stability of eutectic and peritectic coupled growth

  • Research Summary
  • Eutectic Solidification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Both eutectic and peritectic alloys exhibit three-phase equilibria and are used in diverse practical applications ranging from casting and welding to growing superconducting crystals. In-situ composites formed by the diffusively coupled growth of two solid phases are ubiquitous in eutectic solidification. This growth, however, is generally only stable over a finite range of eutectic spacing. The addition of a dilute ternary impurity can destabilize the interface and produce coarse two-phase cellular structures. Whether coupled growth is theoretically possible in peritectic alloys has been a question for over 40 years. This article reviews the current status of phase-field modeling of polyphase solidification in eutectic and peritectic alloys. Also discussed are new findings from both simulations and experiments that shed new light on the similarities and differences between the morphological stability of eutectic and peritectic coupled growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kurz and D.J. Fisher, Fundamentals of Solidification (Zurich, Switzerland: Trans Tech Publ., 1998).

    Google Scholar 

  2. K.A. Jackson and J.D. Hunt, Transactions of the Metallurgical Society of AIME, 236 (1966), pp. 1129–1142.

    CAS  Google Scholar 

  3. B. Chalmers, Physical Metallurgy (New York: Wiley, 1959).

    Google Scholar 

  4. M.C. Flemings, Solidification Processing (New York: McGraw-Hill, 1974).

    Google Scholar 

  5. W.J. Boettinger, Metallurgical Transactions, 5 (1974), pp. 2023–2031.

    Article  CAS  Google Scholar 

  6. W. Kurz and P.R. Sahm, Gerichtet erstarrte eutektische Werkstoffe (Berlin: Springer, 1975).

    Google Scholar 

  7. J.H. Lee and J.D. Verhoeven, Journal of Crystal Growth, 143 (1994), pp. 86–102.

    Article  CAS  Google Scholar 

  8. M. Vandyoussefi, H.W. Kerr, and W. Kurz, Acta Materialia, 48 (2000), pp. 2297–2306.

    Article  CAS  Google Scholar 

  9. W.J. Boettinger et al., Annual Review of Materials Research, 32 (2002), pp. 163–194.

    Article  CAS  Google Scholar 

  10. A. Karma, Physical Review E, 49 (1994), pp. 2245–2250.

    Article  CAS  Google Scholar 

  11. K.R. Elder et al., Physical Review Letters, 72 (1994), pp. 677–680.

    Article  CAS  Google Scholar 

  12. A.A. Wheeler, G.B. McFadden, and W.J. Boettinger, Proceedings of the Royal Society of London Series A, 452 (1996), pp. 495–525.

    CAS  Google Scholar 

  13. T.S. Lo, A. Karma, and M. Plapp, Physical Review E, 6303 (2001), Art. No. 031504.

  14. I. Steinbach et al., Physica D, 94 (1996), pp. 135–147.

    Article  Google Scholar 

  15. J. Tiaden et al., Physica D, 115 (1998), pp. 73–86.

    Article  CAS  Google Scholar 

  16. B. Nestler and A.A. Wheeler, Physica D, 138 (2000), pp. 114–133.

    Article  CAS  Google Scholar 

  17. D.J. Lewis, W.J. Boettinger, and J.A. Warren, Proceedings of Modeling Casting and Advanced Solidification Processes X, ed. D. Stefanescu et al. (Lafayette, LA: Times of Acadiana, Inc., 2003), pp. 1–50.

    Google Scholar 

  18. A. Karma, Physical Review Letters, 8711 (2001), Art. No. 115701.

  19. A. Karma and W.J. Rappel, Physical Review E, 53 (1996), pp. R3017-R3020.

    Article  CAS  Google Scholar 

  20. A. Karma and W.J. Rappel, Physical Review E, 57 (1998), pp. 4323–4349.

    Article  CAS  Google Scholar 

  21. R. Folch and M. Plapp, Physical Review E, 68 (2003), Art. No. 010602.

  22. M. Hillert, Jernkontorets Ann., 141 (1957), p. 773.

    Google Scholar 

  23. S. Akamatsu et al., Physical Review E, 66 (2002), Art. No. 030501.

  24. J.S. Langer, Physical Review Letters, 44 (1980), pp. 1023–1026.

    Article  CAS  Google Scholar 

  25. Y.J. Chen and S.H. Davis, Acta Materialia, 49 (2001), pp. 1363–1372.

    Article  CAS  Google Scholar 

  26. K. Kassner and C. Misbah, Physical Review A, 44 (1991), pp. 6533–6543.

    Article  CAS  Google Scholar 

  27. A. Karma and A. Sarkissian, Metallurgical and Materials Transactions A, 27 (1996), pp. 635–656.

    Article  Google Scholar 

  28. M. Ginibre, S. Akamatsu, and G. Faivre, Physical Review E, 56 (1997), pp. 780–796.

    Article  CAS  Google Scholar 

  29. H.W. Weart and D.J. Mack, Transactions of the American Institute of Mining and Metallurgical Engineers, 212 (1958), pp. 664–670.

    CAS  Google Scholar 

  30. R.W. Kraft and D.L. Albright, Transactions of the Metallurgical Society of Aime, 221 (1961), pp. 95–102.

    CAS  Google Scholar 

  31. D.G. McCartney, J.D. Hunt, and R.M. Jordan, Metallurgical Transactions A, 11 (1980), pp. 1243–1249.

    Google Scholar 

  32. S. Akamatsu and G. Faivre, Physical Review E, 61 (2000), pp. 3757–3770.

    Article  CAS  Google Scholar 

  33. M. Plapp and A. Karma, Physical Review E, 60 (1999), pp. 6865–6889.

    Article  CAS  Google Scholar 

  34. M. Plapp and A. Karma, Physical Review E, 66 (2002), Art. No. 061608.

  35. S. Dobler et al., Acta Materialia, in press (2004).

  36. T.S. Lo, Ph.D. Thesis (Northeastern University, Boston, MA, 1999).

    Google Scholar 

  37. P. Mazumder, R. Trivedi, and A. Karma, Metallurgical and Materials Transactions A, 31 (2000), pp. 1233–1246.

    Article  Google Scholar 

  38. P. Mazumder and R. Trivedi, Physical Review Letters, 88 (2002), Art. No. 235507.

  39. R. Trivedi, Metallurgical and Materials Transactions A, 26 (1995), pp. 1583–1590.

    Article  Google Scholar 

  40. T. Lo et al., Acta Materialia, 51 (2003), pp. 599–611.

    Article  CAS  Google Scholar 

  41. J.M. Debierre et al., Physical Review E, 68 (2003), Art. No. 041604.

  42. J.J. Hoyt, M. Asta, and A. Karma, Physical Review Letters, 86 (2001), pp. 5530–5533.

    Article  CAS  Google Scholar 

  43. J.J. Hoyt, M. Asta, and A. Karma, Interface Science, 10 (2002), pp. 181–189.

    Article  Google Scholar 

  44. M. Asta, J.J. Hoyt, and A. Karma, Physical Review B, 66 (2002), Art. No. 100101.

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Alain Karma, Northeastern University, Physics Department and Center for Interdisciplinary Research on Complex Systems, Boston, MA 02115; e-mail a.karma@neu.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karma, A., Plapp, M. New insights into the morphological stability of eutectic and peritectic coupled growth. JOM 56, 28–32 (2004). https://doi.org/10.1007/s11837-004-0069-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-004-0069-7

Keywords

Navigation