Skip to main content
Log in

A model of convection-induced oscillatory structure formation in peritectic alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the two-phase region of a peritectic system, experimental studies have shown that the primary phase (α) often forms a large treelike structure that is surrounded by peritectic phase (β). The formation of this novel structure has been attributed to the presence of convection in the liquid. Here, specific physical mechanisms of convection-induced treelike structure formation are proposed. A mathematical model based on advection-diffusion of solute, with prototype flows for advection, is presented and solved numerically to show that an oscillating fluid motion can give rise to a complex oscillatory, treelike structure. Three different regimes are established: diffusive, steady convective, and unsteady convective regimes. In the diffusive regime, a banded structure is predicted within a narrow composition range, and the spacing of the bands is dictated by the nucleation undercoolings of the two phases. Under steady convection, the primary phase transforms into the peritectic phase with a curved α:β interface. Finally, in the presence of oscillating convection, a treelike shape of the primary phase is predicted, as observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.J. Boettinger: Metall. Trans., 1974, vol. 5, pp. 2023–31.

    CAS  Google Scholar 

  2. H.D. Brody and S.A. David: Int. Conf. Solidification and Casting, Institute of Metals, London, 1977, vol. 1, pp. 144–51.

    Google Scholar 

  3. A.P. Titchener and J.A. Spittle: Acta Metall., 1957, vol. 23, pp. 497–502.

    Google Scholar 

  4. B.C. Fuh: Ph.D. Thesis, Iowa State University, Ames, IA, 1984.

    Google Scholar 

  5. A. Karma, W.J. Rappel, B.C. Fuh, and R. Trivedi: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1457–70.

    Article  CAS  Google Scholar 

  6. R. Trivedi: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1583–90.

    CAS  Google Scholar 

  7. K. Zeishler-Mashl and T. Lograsso: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1543–52.

    Article  Google Scholar 

  8. J.S. Park and R. Trivedi: J. Cryst. Growth, 1998, vol. 187, pp. 511–15.

    Article  CAS  Google Scholar 

  9. P. Mazumder: Ph.D Thesis, Iowa State University, Ames, IA, 1999.

    Google Scholar 

  10. P. Mazumder, R. Trivedi, and A. Karma: Proc. MRS, E. Ma, M. Atzmon, P. Bellon, and R. Trivedi, eds. Materials Research Society, Pittsburgh, PA, 1998, vol. 481, pp. 39–44.

    Google Scholar 

  11. P. Mazumder and R. Trivedi: in Fluid Flow Phenomena in Metals Processing. N. El-Kaddah, D.G.C. Robertson, S.T. Johansen, and V.R. Voller, eds. TMS, Warrendale, PA, 1999.

    Google Scholar 

  12. P. Mazumder and R. Trivedi: unpublished research.

  13. S.H. Davis: and in Handbook of Crystal Growth, D.T.J. Hurle, ed., North-Holland, Amsterdam, 1994, pp. 861–97.

    Google Scholar 

  14. H.W. Kerr and W. Kurz: Int. Mater. Rev., 1996, vol. 41, pp. 129–65.

    CAS  Google Scholar 

  15. R. Trivedi, H. Miyahara, P. Mazumder, and S. Tiwari: unpublished research, 1999.

  16. G.B. McFadden, R.G. Rehm, S.R. Coriell, W. Chuck, and K.A. Morrish: Metall. Trans. A, 1984, vol. 15A, pp. 2125–37.

    CAS  Google Scholar 

  17. G.B. Mcfadden and S.R. Coriell: Phys. Fluids, 1986, vol. 30, pp. 659–71.

    Article  Google Scholar 

  18. R.J. Naumann: J. Cryst. Growth, 1982, vol. 58, p. 589.

    Google Scholar 

  19. C.J. Chang and R.A. Brown: J. Cryst. Growth, 1983, vol. 63, pp. 343–65.

    Article  CAS  Google Scholar 

  20. P.M. Adornato and R.A. Brown: J. Cryst. Growth, 1987, vol. 80, pp. 155–90.

    Article  CAS  Google Scholar 

  21. D.H. Kim and R.A. Brown: J. Cryst. Growth, 1989, vol. 58, pp. 609–27.

    Article  Google Scholar 

  22. R.A. Brown: AIChE J., 1988, vol. 34, pp. 881–911.

    Article  CAS  Google Scholar 

  23. J.I.D. Alexander, J. Ouazzani, and F. Rosenberger: J. Cryst. Growth, 1989, vol. 97, pp. 285–302.

    Article  Google Scholar 

  24. S. Kappurao, S. Brandon, and J. Derby: J. Cryst. Growth, 1995, vol. 155, pp. 93–102.

    Article  Google Scholar 

  25. S. Kaddeche, J.P. Garandet, C. Barat, H. Ben Hadid, and D. Henry: J. Cryst. Growth, 1996, vol. 158, pp. 144–52.

    Article  CAS  Google Scholar 

  26. H. Ouyang and W Shyy: J. Cryst. Growth, 1997, vol. 173, pp. 352–66.

    Article  Google Scholar 

  27. H. Zhang, L.L. Zhang, V. Prasad, and D.J. Larson, Jr.: J. Heat Transfer, 1998, vol. 120, pp. 865–73.

    CAS  Google Scholar 

  28. G.K. Batchelor: Q. Appl. Math., 1954, vol. 12, pp. 209–33.

    Google Scholar 

  29. D.J. Tritton: Physical Fluid Dynamics, Oxford Science Publications, Oxford, United Kingdom, 1988, p. 35.

    Google Scholar 

  30. D.T.J. Hurle, E. Jakeman, and C.P. Johnson: J. Fluid Mech., 1974, vol. 64, pp. 565–76.

    Article  Google Scholar 

  31. M.G. Braunsfurth and T Mullin: J. Fluid Mech., 1996, vol. 327, pp. 199–219.

    Article  CAS  Google Scholar 

  32. M.A. Azouni: Physicochem. Hydrodyn., 1981, vol. 2, pp. 295–309.

    CAS  Google Scholar 

  33. B. Roux: Numerical Simulation of Oscillatory Convection in Low Pr Fluids, Vieweg, Braunschweig, 1990.

    Google Scholar 

  34. A.C. Skeldon, D.S. Riley, and K.A. Cliffe: J. Cryst. Growth, 1996, vol. 162, pp. 95–106.

    Article  CAS  Google Scholar 

  35. K.H. Winters: Int. J. Num. Methods Fluids, 1988, vol. 25, pp. 401–14.

    Google Scholar 

  36. J.P. Pulicani, E.C. Del Arco, A. Randriamampianina, P. Bontoux, and R. Peyret: Int. J. Num. Methods Fluids, 1989, vol. 10, pp. 481–517.

    Article  Google Scholar 

  37. E.C. Del Arco, J.P. Pulicani, and P. Bontoux: Physicochem. Hydrodyn., 1989, vol. 11, pp. 681–92.

    Google Scholar 

  38. R. Selver, Y. Kamotani, and S. Ostrach: J. Heat Transfer, 1998, vol. 120, pp. 108–14.

    CAS  Google Scholar 

  39. C.W. Lan, M.K. Chen, and M.C. Liang: J. Cryst. Growth, 1998, vol. 187, pp. 303–13.

    Article  CAS  Google Scholar 

  40. M.J. Crochet, F.T. Geyling, and J.J.V. Schaftingen: J. Cryst. Growth, 1983, vol. 65, pp. 166–72.

    Article  CAS  Google Scholar 

  41. M.T. Hyun, D.C. Kuo, T.L. Bergman, and K. S. Ball: Num. Heat Transfer, 1995, vol. 27, pp. 639–50.

    CAS  Google Scholar 

  42. T.L. Bergman and M.T. Hyun: Int. J. Heat Mass Transfer, 1996, vol. 39, pp. 2883–93.

    Article  CAS  Google Scholar 

  43. T. Nishimura, M. Wakamatsu, and A. Morega: Int. J. Heat Mass Transfer, 1998, vol. 41, pp. 1601–11.

    Article  CAS  Google Scholar 

  44. K. Ghorayeb, H. Khallouf, and A. Mojtabi: Int. J. Heat Mass Transfer, 1999, vol. 42, pp. 629–43.

    Article  CAS  Google Scholar 

  45. R. Trivedi, P. Mazumder, and S. Tiwari: unpublished research, 1999.

  46. J.S. Park and R. Trivedi: Iowa State University, Ames, IA, unpublished work, 1997.

  47. J.C. Heinrich: Comp. Methods Appl. Mech. Eng., 1988, vol. 65, pp. 65–88.

    Article  Google Scholar 

  48. W.A. Tiller, K.A. Jackson, J.W. Rutter, and B. Chalmers: Acta Metall., 1953, vol. 1, pp. 428–37.

    Article  CAS  Google Scholar 

  49. H. Schlichting: Boundary Layer Theory, McGraw-Hill, Toronto, 1979.

    Google Scholar 

  50. D.W. Peaceman and H.H. Rachford: J. Soc. Indust. Appl. Math, 1956, vol. 3, p. 28.

    Article  Google Scholar 

  51. L. Lapidus and G.F. Pinder: Numerical Solution of Partial Differential Equations in Science and Engineering, John Wiley & Sons, New York, NY, 1982.

    Google Scholar 

  52. C.A.J. Fletcher: Comp. Techn. Fluid Dyn., 1988, vol. 1, p. 293.

    Google Scholar 

  53. J.D. Verhoeven, J.T. Mason and R. Trivedi: Metall. Trans. A, 1986, vol. 17A, pp. 991–1000.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazumder, P., Trivedi, R. & Karma, A. A model of convection-induced oscillatory structure formation in peritectic alloys. Metall Mater Trans A 31, 1233–1246 (2000). https://doi.org/10.1007/s11661-000-0119-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0119-x

Keywords

Navigation