Skip to main content
Log in

The pyro- and hydrometallurgical processing of uranium-containing waste

  • Overview
  • Waste Treatment & Minimization
  • Published:
JOM Aims and scope Submit manuscript

Abstract

As large amounts of uranium-containing (both high and low-level) waste are generated from activities such as fuel fabrication, fuel reprocessing, and R&D, concern is growing over the safe disposal of these radioactive materials. Over the past few decades, numerous disposal options have been investigated, including pyrometallurgical high-temperature fusion/vitrification, hydrometallurgical processing, biological remediation, polymerization, clay back-filling, and zeolite adsorption. This paper reviews the techniques, thermodynamics, and kinetic aspects of processing uranium-containing waste. In particular, the removal of uranium waste by zeolite adsorption and mechanisms are discussed. In addition, the pyro- and hydrometallurgical conceptual flow sheet is proposed for the disposal of uranium-containing waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Sanning and H. Stietzel, Proc. 4th Int. kfk/TNO Conf. on Contaminated Soil ’93, vol. I, ed. F. Arendt et al. (Dordrecht/Boston/London: Kluwer Academic Publishers, 1993), pp. 11–25.

    Google Scholar 

  2. R.G. Riley, J.M. Zachara, and F.J. Wobber, Chemical Contaminants on DOE Lands and Selection of Contaminant Mixtures for Subsurface Science Research, U.S. Department of Energy (April 1992), p. 29.

  3. A.F. Oluwole et al., Proc. 8th Symp. Radiation Measurements and Applications, vol. 353, N 1-3 (Amsterdam, Elsevier Science B.V., 1994), pp. 499–502.

    Google Scholar 

  4. R.G. Reddy, S. Wang, and A.E. Torma, Proc. Biohydrometallurgical Technologies, vol. 1, ed. A.E. Torma, J.E. Wey, and V.I. Lakshmanan (Warrendale, PA: TMS, 1993), pp. 715–729.

    Google Scholar 

  5. R.G. Reddy, Proc. Mineral Processing, ed. R.W. Smith et al. (Warrendale, PA: TMS, 1991), pp. 453–468.

    Google Scholar 

  6. S. Wang, R.G. Reddy, and A.E. Torma, Proc. 2nd Int. Symp. Year 2000 and Beyond, ed. H.Y. Sohn (Warrendale, PA: TMS, 1994), pp. 583–589.

    Google Scholar 

  7. A.M. Khalid et al., Proc. Bio-hydrometallurgical Technologies, vol. 1, ed. A.E. Torma et al. (Warrendale, PA: TMS, 1993), pp. 299–307.

    Google Scholar 

  8. G.W. Strandberg, S.E. Shumate, II, and J.R. Parrott, Jr., Applied and Environmental Microbiology, 41 (1) (1981), pp. 237–245.

    CAS  Google Scholar 

  9. G.M. Gadd, Chemistry and Industry (London), 13 (1990), pp. 421–426.

    Google Scholar 

  10. A. Nakajima and T. Sakaguchi, J. Chem. Technol. Biotechnol., 36 (6) (1986), pp. 281–289.

    Article  CAS  Google Scholar 

  11. R.L. Miller, J.M. Welch, and J.E. Flinn, Miner. Metall. Process., 2 (1) (1985), pp. 51–52.

    CAS  Google Scholar 

  12. I.P. Smirnov et al., Atomnaya Energiya, 78 (4) (1995), pp. 288–289.

    Google Scholar 

  13. F. Delmas and C.J. Coelho (Paper presented at the 5th Symp. on Ion Exchange held at Lake Balaton, Hungary, May 1986).

  14. J.L. Buelt, Proc. 4th Int. kfk/TNO Conf. on Contaminated Soil ’93, vol. II, ed. F. Arendt et al. (Dordrecht/Boston/London: Kluwer Academic Publishers, 1993), pp. 639–645.

    Google Scholar 

  15. J. Davidovits, Concrete International, 16 (12) (1994), pp. 53–58.

    CAS  Google Scholar 

  16. S.Y. Lee and R.W. Tank, Applied Clay Science, 1 (1985), pp. 145–162.

    Article  CAS  Google Scholar 

  17. D.W. Oscarson and S.C.H. Cheung, Atomic Energy Can Ltd Rep. (1983), p. 37.

  18. F. Bucher and M. Muller-Vonmoos, Applied Clay Science, 4 (1989), pp. 157–177.

    Article  CAS  Google Scholar 

  19. R.E. Grim, Clay Minerology (New York: McGraw-Hill, 1975).

    Google Scholar 

  20. R.N. Yong and B.P. Warkentin, Soil Properties and Behavior (New York: Elsevier Scientific Publishing Co., 1975).

    Google Scholar 

  21. J.K. Mitchell, Fundamentals of Soil Behavior (New York: John Wiley and Sons, 1975).

    Google Scholar 

  22. R. Soundararajan, Journal of Hazardous Materials, 24 (1990), pp. 199–212.

    Article  CAS  Google Scholar 

  23. J.A.C. Marples, Glass Technology, 29 (6) (1988), pp. 230–247.

    CAS  Google Scholar 

  24. S.D. Moegling, Proc. Specialty Conference on Environmental Engineering (New York: ASCE, 1989), pp. 154–59.

    Google Scholar 

  25. P.A. Tempest, Nuclear Technology, 52 (1981), pp. 415–425.

    CAS  Google Scholar 

  26. M.E. Morgenstein and D.L. Shettel, Jr., Proc. of the 4th Annual Intl. Conf., American Nuclear Society and American Society of Civil Engineers (Reston, VA: ASCE, 1993), pp. 1728–1734.

    Google Scholar 

  27. A.E. Ring Wood, Safety Disposal of High-Level Nuclear Reactor Waste: A New Strategy (Canberra, Australia: Australian National University Press, 1978).

    Google Scholar 

  28. H.D. Megaw, Proc. Phys. Soc., 85 (133) (1946).

  29. R.G. Reddy and K.N. Hebbar, Proc. Symp. on New Remediation Technology in the Changing Environmental Arena, ed. B.J. Scheiner et al. (Littleton, CO: SME, 1995), pp. 171–175.

    Google Scholar 

  30. I. Petrovic et al., Chem. Mater., 5 (1993), pp. 1805–1813.

    Article  CAS  Google Scholar 

  31. A. Navrotsky, MRS Bulletin, 22 (5) (1997), pp. 35–41.

    CAS  Google Scholar 

  32. CODATA Task Group, J. Chem. Thermodyn., 8 (1976), p. 603.

    Article  Google Scholar 

  33. J.Y. Ying, J.B. Benziger, and A. Navrotsky, J. Am. Ceram. Soc., 76 (1993), p. 1465.

    Google Scholar 

  34. M.K. Mohan and R.G. Reddy, Global Symposium on Recycling, Waste Treatment and Clean Technology, vol. I., ed. I. Gaballah, J. Hager, and R. Solozabal (Warrendale, PA: TMS 1999), pp. 857–868.

    Google Scholar 

  35. F.C.V. Renaud, J. Chem. Soc. Faraday Trans., 86 (24) (1990), pp. 4095–4099.

    Article  Google Scholar 

  36. R.T. Pabalan et al., Mat. Res. Soc. Symp. Proc., 294 (1993), pp. 777–782.

    CAS  Google Scholar 

  37. M.T. Olguin and M. Solache, Separation Science and Technology, 29 (16) (1984), pp. 2161–2178.

    Google Scholar 

  38. H. Mimura and K. Akiba, J. of Nuclear Science and Technology, 30 (5) (1993), pp. 436–443.

    Article  CAS  Google Scholar 

  39. H. Mimura, K. Akiba, and K. Kawamura, J. of Nuclear Science and Technology, 31 (5) (1994), pp. 463–69.

    CAS  Google Scholar 

  40. S. Forberg, T. Westermark, and L. Falth, Proc. of 3rd Int. Symp. on the Scientific Basis for Nuclear Waste Management (New York: Plenum Press, 1980), pp. 227–234.

    Google Scholar 

  41. D.E.W. Vaughan, Properties of Natural Zeolites: Occurrence, Properties, Use, ed. L.B. Sand and F.A. Mumption (New York: Pergamon Press, 1978), pp. 353–355.

    Google Scholar 

  42. R.A. Munson, Properties of Natural Zeolities, U.S. Bur. of Mines Rept. of Invest. 7744 (1973), pp. 1–3.

    Google Scholar 

  43. J.V. Smith, Zeolite Chemistry and Catalysis, Monogr. 171, ed. J.A. Rabo (New York: Am. Chem. Soc., 1976).

    Google Scholar 

  44. D.C. Grant et al., Proc. of AIChE Symp. Series, Adsorption and Ion Exchange: Fundamentals and Applications, 84 (264) (New York: AIChE, 1988), pp. 13–22.

    Google Scholar 

  45. S. Ergun, Chem. Eng. Prog., 48 (89) (1952).

  46. R.G. Reddy and Z. Cai, Light Metals 1996, ed. W.R. Hale (Warrendale, PA: TMS, 1996), pp. 1173–1180.

    Google Scholar 

  47. M.J. Zamzow et al., Separation Science and Technology, 25 (13–15) (1990), pp. 1555–1569.

    CAS  Google Scholar 

  48. M. Saleem and M. Afzal, Separation Science and Technology, 27 (2) (1992), pp. 239–253.

    CAS  Google Scholar 

  49. U. Cetin and R.K. Mehta, Pre-print (Paper presented at the SME Annual Meeting, Orlando, Florida, March 1998).

  50. P.E. Eberly, Jr., Zeolite Chemistry and Catalysis, ed. J.A. Rabo, ACS Monogr. 171 (Washington D.C.: ACS, 1976), p. 392.

    Google Scholar 

  51. D.M. Ruthven, “Diffusion in Zeolites: A Review of Recent Progress, in the Properties and Applications of Zeolites,” ed. R.P. Townsend (London: Chem. Soc., 1980), p. 44.

    Google Scholar 

  52. M.K. Mohan and R.G. Reddy, Recent Res. Devel. Metallurg. & Materials Sci., 3 (1999), pp. 49–69.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact R.G. Reddy, The University of Alabama, A-129 Bevill, Tuscaloosa, Alabama 35487-0202; phone: (205) 348-4246; fax: (205) 348-2164; e-mail: rreddy@coe.eng.ua.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, R.G. The pyro- and hydrometallurgical processing of uranium-containing waste. JOM 53, 21–24 (2001). https://doi.org/10.1007/s11837-001-0157-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-001-0157-x

Keywords

Navigation