Skip to main content
Log in

Intérêt de la spectrométrie de masse MALDI-TOF pour l’identification des levures. Évaluation et utilisation en routine hospitalière à Dijon et à Lille

Usefulness of Mass Spectrometry MALDI-TOF in Identification of Medically Important Yeasts: Evaluation and Routine Use in Clinical Laboratory of Dijon and Lille Hospitals

  • Mise au Point
  • Published:
Bio tribune magazine

Résumé

L’identification conventionnelle (IC) des levures est fondée sur l’utilisation des tests morphologiques, immunologiques et biochimiques (galerie API® 32 C, bioMérieux). La spectrométrie de masse MALDI-TOF (SM) a été proposée récemment comme nouvelle approche pour l’identification des microorganismes. L’objectif de notre étude était de comparer prospectivement les performances analytiques de la SM et de l’IC pour l’identification des isolats cliniques de levures. En cas de discordance d’identification, le séquençage des régions ITS de l’ADN ribosomal était utilisé comme méthode d’identification de référence. Un total de 1 207 souches a été analysé. Une concordance entre SM et IC a été observée pour 1 105 souches (91,5 %) alors que la proportion de souches différemment identifiées par IC et SM n’était que de 6,1 % (74 souches). Parmi ces 74 identifications discordantes entre SM, l’identification par biologie moléculaire confirmait l’identification obtenue par SM pour 73 isolats (6 %) et celle obtenue par IC pour 1 isolat (0,1 %). Pour les principales espèces d’intérêt médical, les concordances d’identification entre les deux techniques étaient excellentes (entre 98 et 100 %) y compris pour les espèces phylogénétiquement proches (Candida albicans/Candida dubliniensis; Candida inconspicua/Candida norvegensis; Candida parapsilosis/Candida metapsilosis/Candida orthopsilosis). La SM n’a été mise en défaut que pour 2,3 % des souches appar tenant aux espèces Candida famata, Candida lambica, Candida magnoliae et aux genres Geotrichum sp. et Trichosporon sp. Nos investigations soulignent le potentiel de la SM pour l’identification des levures et comme alternative fiable, rapide et de moindre coût par rapport aux méthodes conventionnelles.

Abstract

The conventional identification (CI) of yeasts is based on the use of the morphological, biochemical (e.g. API® 32 C system, bioMérieux) and/or immunological methods. The mass spectrometry MALDI TOF (MS) was recently proposed as a new approach for the identification of microorganisms. The objective of our study was to prospectively compare the analytical performances of the MS and CI for yeasts identification in clinical samples. Furthermore, sequencing the internal transcribed spacer (ITS) regions of the ribosomal DNA was employed as a reference method. A total of 1207 yeast isolates was analyzed. A concordance between MS and CI was observed for 1105 strains (91.5 %) while the proportion of strains mis-identified by CI and/or MS was only 6.1 % (74 strains). Within this last group, a correct identification by SM was confirmed for 73 isolates (6 %) and by IC for 1 isolates (0.1 %) using molecular tools. For the medically important yeast species, the concordance between both techniques was excellent (ranging from 98 and 100 %), including identification of the closely related species (Candida albicans/Candida dubliniensis; Candida inconspicua/Candida norvegensis; Candida parapsilosis/Candida metapsilosis/Candida orthopsilosis). Lack of identification by MS was observed only for 2.3 % of the strains belonging to Candida famata, Candida lambica, Candida magnoliae species and to Geotrichum sp. and Trichosporon sp genus. Our investigations underline the potential for MS based identification of yeasts species as a reliable, time and cost efficient alternative to conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20: 133–163

    Article  PubMed  CAS  Google Scholar 

  2. Patterson TF (2005) Advances and challenges in management of invasive mycoses. Lancet 366: 1013–1025

    Article  PubMed  Google Scholar 

  3. Espinel-Ingroff A (2003) In vitro antifungal activities of anidulafungin and micafungin, licensed agents and the investigational triazole posaconazole as determined by NCCLS methods for 12,052 fungal isolates: review of the literature. Rev Iberoam Micol 20: 121–136

    PubMed  Google Scholar 

  4. Marr KA (2000) The changing spectrum of candidemia in oncology patients: therapeutic implications. Curr Opin Infect Dis 13: 615–620

    Article  PubMed  Google Scholar 

  5. Marr KA, Seidel K, White TC, Bowden RA (2000) Candidemia in allogeneic blood and marrow transplant recipients: evolution of risk factors after the adoption of prophylactic fluconazole. J Infect Dis 181: 309–316

    Article  PubMed  CAS  Google Scholar 

  6. Fujita S, Senda Y, Okusi T, et al. (2007) Catheter-related fungemia due to fluconazole-resistant Candida nivariensis. J Clin Microbiol 45: 3459–3461

    Article  PubMed  Google Scholar 

  7. Lockhart SR, Messer SA, Gherna M, et al. (2009) Identification of Candida nivariensis and Candida bracarensis in a large global collection of Candida glabrata isolates: comparison to the literature. J Clin Microbiol 47: 1216–1217

    Article  PubMed  CAS  Google Scholar 

  8. Miceli MH, Díaz JA, Lee SA (2011) Emerging opportunistic yeast infections. Lancet Infect Dis 11: 142–151

    Article  PubMed  Google Scholar 

  9. Pappas PG, Rex JH, Sobel JD, et al. (2004) Guidelines for treatment of candidiasis. Clin Infect Dis 38: 161–189

    Article  PubMed  Google Scholar 

  10. De Rosa FG, Garazzino S, Pasero D, et al. (2009) Invasive candidiasis and candidemia: new guidelines. Minerva Anestesiol 75: 453–458

    PubMed  Google Scholar 

  11. Maertens J, Marchetti O, Herbrecht R, et al. (2011) European guidelines for antifungal management in leukemia and hematopoietic stem cell transplant recipients: summary of the ECIL 3—2009 update. Bone Marrow Transplant 46: 709–718

    Article  PubMed  CAS  Google Scholar 

  12. Pincus DH, Orenga S, Chatellier S (2007) Yeast identification—past, present, and future methods. Med Mycol 45: 97–121

    Article  PubMed  CAS  Google Scholar 

  13. Loïez C, Wallet F, Sendid B, Courcol RJ (2006) Evaluation of VITEK 2 colorimetric cards versus fluorimetric cards for identification of yeasts. Diagn Microbiol Infect Dis 56: 455–457

    Article  PubMed  Google Scholar 

  14. Sullivan DJ, Westerneng TJ, Haynes KA, et al. (1995) Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 141: 1507–1521

    CAS  Google Scholar 

  15. Borman AM, Petch R, Linton CJ, et al. (2008) Candida nivariensis, an emerging pathogenic fungus with multidrug resistance to antifungal agents. J Clin Microbiol 46: 933–938

    Article  PubMed  CAS  Google Scholar 

  16. Garner CD, Starr JK, McDonough PL, Altier C (2010) Molecular identification of veterinary yeast isolates by use of sequence-based analysis of the D1/D2 region of the large ribosomal subunit. J Clin Microbiol 48: 2140–2146

    Article  PubMed  CAS  Google Scholar 

  17. Leaw SN, Chang HC, Sun HF, et al. (2006) Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. J Clin Microbiol 44: 693–699

    Article  PubMed  CAS  Google Scholar 

  18. Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5’ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35: 1216–1223

    PubMed  CAS  Google Scholar 

  19. Cornet M, Sendid B, Fradin C, et al. (2011) Molecular identification of closely related Candida species using two ribosomal intergenic spacer fingerprinting methods. J Mol Diagn 13: 12–22

    Article  PubMed  CAS  Google Scholar 

  20. Anhalt JP, Fenselau C (1975) Identification of bacteria using mass spectrometry. Analytical Chemistry 47: 219–225

    Article  CAS  Google Scholar 

  21. Haag AM, Taylor SN, Johnston KH, Cole RB (1998) Rapid identification and speciation of Haemophilus bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 33: 750–756

    Article  PubMed  CAS  Google Scholar 

  22. Krishnamurthy T, Ross PL (1996) Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun Mass Spectrom 10: 1992–1996

    Article  PubMed  CAS  Google Scholar 

  23. Alanio A, Beretti JL, Dauphin B, et al. (2011) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clin Microbiol Infect 17: 750–755

    Article  PubMed  CAS  Google Scholar 

  24. Bizzini A, Durussel C, Bille J, et al. (2010) Performance of matrixassisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 48: 1549–1554

    Article  PubMed  CAS  Google Scholar 

  25. Marklein G, Josten M, Klanke U, et al. (2009) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47: 2912–2917

    Article  PubMed  CAS  Google Scholar 

  26. Chen YC, Eisner JD, Kattar MM, et al. (2000) Identification of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes. J Clin Microbiol 38: 2302–2310

    PubMed  CAS  Google Scholar 

  27. Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 8: 939–954

    Article  PubMed  CAS  Google Scholar 

  28. Stevenson LG, Drake SK, Shea YR (2010) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol 48: 3482–3486

    Article  PubMed  CAS  Google Scholar 

  29. Kaleta EJ, Clark AE, Cherkaoui A, et al. (2011) Comparative analysis of PCR-electrospray ionization/mass spectrometry (MS) and MALDITOF/ MS for the identification of bacteria and yeast from positive blood culture bottles. Clin Chem 57: 1057–1067

    Article  PubMed  CAS  Google Scholar 

  30. Marinach-Patrice C, Fekkar A, Atanasova R, et al. (2010) Rapid species diagnosis for invasive candidiasis using mass spectrometry. PLoS One 5: e8862

    Article  PubMed  Google Scholar 

  31. Hettick JM, Green BJ, Buskirk AD, et al. (2008) Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Anal Biochem 380: 276–281

    Article  PubMed  CAS  Google Scholar 

  32. Theel ES, Hall L, Mandrekar J, Wengenack NL (2011) Dermatophyte Identification Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol. doi:10.1128/JCM.01280-11

  33. Kemptner J, Marchetti-Deschmann M, Mach R, et al. (2009) Evaluation of matrix-assisted laser desorption/ionization (MALDI) preparation techniques for surface characterization of intact Fusarium spores by MALDI linear timeofflight mass spectrometry. Rapid Commun Mass Spectrom 23: 877–884

    Article  PubMed  CAS  Google Scholar 

  34. Seyfarth F, Ziemer M, Sayer HG, et al. (2008) The use of ITS DNA sequence analysis and MALDI-TOF mass spectrometry in diagnosing an infection with Fusarium proliferatum. Exp Dermatol 17: 965–971

    Article  PubMed  CAS  Google Scholar 

  35. Qian J, Cutler JE, Cole RB, Cai Y (2008) MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Anal Bioanal Chem 392: 439–449

    Article  PubMed  CAS  Google Scholar 

  36. Putignani L, Del Chierico F, Onori M, et al. (2011) MALDI-TOF mass spectrometry proteomic phenotyping of clinically relevant fungi. Mol Biosyst 7: 620–629

    Article  PubMed  CAS  Google Scholar 

  37. Marinach C, Alanio A, Palous M, et al. (2009) MALDI-TOF MS-based drug susceptibility testing of pathogens: the example of Candida albicans and fluconazole. Proteomics 9: 4627–4631

    Article  PubMed  CAS  Google Scholar 

  38. Rogers PD, Vermitsky JP, Edlind TD, Hilliard GM (2006) Proteomic analysis of experimentally induced azole resistance in Candida glabrata. J Antimicrob Chemother 58: 434–438

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sendid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sendid, B., Ducoroy, P., François, N. et al. Intérêt de la spectrométrie de masse MALDI-TOF pour l’identification des levures. Évaluation et utilisation en routine hospitalière à Dijon et à Lille. Bio trib. mag. 40, 37–44 (2011). https://doi.org/10.1007/s11834-011-0060-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11834-011-0060-x

Mots clés

Keywords

Navigation