Skip to main content

Advertisement

Log in

Growth modulation in the management of growing spine deformities

  • Current Concept Review
  • Published:
Journal of Children's Orthopaedics
    error code: 525

Abstract

The Hueter–Volkmann law explains the physiological response of the growth plate under mechanical loading. This law mainly explains the pathological mechanism for growing long-bone deformities. Vertebral endplates also show a similar response under mechanical loading. Experimental studies have provided information about spinal growth modulation and, now, it is possible to explain the mechanism of the curvature progression. Convex growth arrest is shown to successfully treat deformities of the growing spine and unnecessary growth arrest of the whole spine is prevented. Both anterior and posterior parts of the convexity should be addressed to achieve a satisfactory improvement in the deformity, albeit epiphysiodesis effect cannot be stipulated at all times. Anterior vertebral body stapling without fusion yielded better results with new shape memory alloys and techniques. This method can be used with minimally invasive techniques and has the potential advantage of producing reversible physeal arrest. Instrumented posterior hemiepiphysiodesis seems to be as effective as classical combined anterior and posterior arthrodesis, where it is less invasive and morbid. Convex hemiepiphysiodesis with concave-side distraction through growing rod techniques provide a better control of the curve immediately after surgery. This method has the advantages of posterior instrumented hemiepiphysiodesis, but necessitates additional surgeries. Concave-side rib shortening and/or convex-side lengthening is an experimental method with an indirect effect on spinal growth. To conclude, whatever the cause of the spinal deformity, growth modulation can be used to manage the growing spine deformities with no or shorter segment fusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dimeglio A (2001) Growth in pediatric orthopaedics. J Pediatr Orthop 21:549–555. doi:10.1097/00004694-200107000-00026

    CAS  Google Scholar 

  2. Bridwell KH (1994) Adolescent idiopathic scoliosis: surgical treatment. In: Weinstein SL (ed) The pediatric spine: principles and practice. Raven Press, New York, pp 511–555

    Google Scholar 

  3. Dickson RA (1994) Early-onset idiopathic scoliosis. In: Weinstein SL (ed) The pediatric spine: principles and practice. Raven Press, New York, pp 421–429

    Google Scholar 

  4. Moe JH, Byrd JA 3rd (1987) Idiopathic scoliosis. In: Bradford DS, Lonstein JE, Moe JH, Winter RB, Oglivie JW (eds) Moe’s textbook of scoliosis and other spinal deformities, 2nd edn. WB Saunders, Philadelphia, pp 191–232

    Google Scholar 

  5. Stokes IA, Burwell RG, Dangerfield PH; IBSE (2006) Biomechanical spinal growth modulation and progressive adolescent scoliosis—a test of the ‘vicious cycle’ pathogenetic hypothesis: summary of an electronic focus group debate of the IBSE. Scoliosis 1:16. doi:10.1186/1748-7161-1-16

    Article  Google Scholar 

  6. Aykut US, Yazici M, Kandemir U, Gedikoglu G, Aksoy MC, Cil A, Surat A (2005) The effect of temporary hemiepiphyseal stapling on the growth plate: a radiologic and immunohistochemical study in rabbits. J Pediatr Orthop 25:336–341. doi:10.1097/01.bpo.0000152906.23669.d8

    Article  Google Scholar 

  7. Smith AD, Von Lackum WH, Wylie R (1954) An operation for stapling vertebral bodies in congenital scoliosis. J Bone Joint Surg Am 36(A:2):342–348

    CAS  Google Scholar 

  8. Guille JT, D’Andrea LP, Betz RR (2007) Fusionless treatment of scoliosis. Orthop Clin North Am 38(4):541–545. doi:10.1016/j.ocl.2007.07.003

    Article  Google Scholar 

  9. Puttlitz CM, Masaru F, Barkley A, Diab M, Acaroglu E (2007) A biomechanical assessment of thoracic spine stapling. Spine 32(7):766–771. doi:10.1097/01.brs.0000259073.16006.ed

    Article  Google Scholar 

  10. Betz RR, Kim J, D’Andrea LP, Mulcahey MJ, Balsara RK, Clements DH (2003) An innovative technique of vertebral body stapling for the treatment of patients with adolescent idiopathic scoliosis: a feasibility, safety, and utility study. Spine 28(20):S255–S265. doi:10.1097/01.BRS.0000092484.31316.32

    Article  Google Scholar 

  11. Betz RR, D’Andrea LP, Mulcahey MJ, Chafetz RS (2005) Vertebral body stapling procedure for the treatment of scoliosis in the growing child. Clin Orthop Relat Res 434:55–60. doi:10.1097/01.blo.0000163472.46511.a8

    Article  Google Scholar 

  12. Bjerkreim I, Hassan I (1982) Progression in untreated idiopathic scoliosis after end of growth. Acta Orthop Scand 53(6):897–900

    Article  CAS  Google Scholar 

  13. Weinstein SL, Ponseti IV (1983) Curve progression in idiopathic scoliosis. J Bone Joint Surg Am 65(4):447–455

    CAS  Google Scholar 

  14. Beguiristain JL, De Salis J, Oriaifo A, Cañadell J (1980) Experimental scoliosis by epiphysiodesis in pigs. Int Orthop 3(4):317–321. doi:10.1007/BF00266028

    Article  CAS  Google Scholar 

  15. Cil A, Yazici M, Daglioglu K, Aydingoz U, Alanay A, Acaroglu RE, Gulsen M, Surat A (2005) The effect of pedicle screw placement with or without application of compression across the neurocentral cartilage on the morphology of the spinal canal and pedicle in immature pigs. Spine 30(11):1287–1293. doi:10.1097/01.brs.0000164136.95885.e7

    Article  Google Scholar 

  16. Yazici M, Yilmaz G, Pekmezci M, Daglioglu K, Oner FC (2007) The effect of early anterior spinal fusion on spinal canal size in an immature porcine model. J Child Orthop 1:255–276. doi:10.1007/s11832-007-0048-y

    Article  Google Scholar 

  17. Zhang H, Sucato DJ (2008) Unilateral pedicle screw epiphysiodesis of the neurocentral synchondrosis. Production of idiopathic-like scoliosis in an immature animal model. J Bone Joint Surg Am 90(11):2460–2469

    Article  Google Scholar 

  18. Villemure I, Aubin CE, Dansereau J, Labelle H (2004) Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur Spine J 13(1):83–90. doi:10.1007/s00586-003-0565-4

    Article  CAS  Google Scholar 

  19. Huynh AM, Aubin CE, Rajwani T, Bagnall KM, Villemure I (2007) Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study. Eur Spine J 16(4):523–529. doi:10.1007/s00586-006-0235-4

    Article  Google Scholar 

  20. Adams W (1865) Lectures on the pathology and treatment of lateral and other forms of curvature of the spine. Churchill and Sons, London

    Google Scholar 

  21. Dickson RA, Lawton JO, Archer IA, Butt WP (1983) Combined median and coronal plane asymmetry: the essential lesion of progressive idiopathic scoliosis. J Bone Joint Surg Br 65:368

    Google Scholar 

  22. Dickson RA, Lawton JO, Archer IA, Butt WP (1984) The pathogenesis of idiopathic scoliosis. Biplanar spinal asymmetry. J Bone Joint Surg Br 66:8–15

    CAS  Google Scholar 

  23. Roaf R (1966) The basic anatomy of scoliosis. J Bone Joint Surg Br 48:786–792

    CAS  Google Scholar 

  24. Somerville EW (1952) Rotational lordosis: the development of the single curve. J Bone Joint Surg Br 34:421–427

    Google Scholar 

  25. Porter RW (2001) Can a short spinal cord produce scoliosis? Eur Spine J 10(1):2–9. doi:10.1007/s005860000188

    Article  CAS  Google Scholar 

  26. Perdriolle R, Bechetti S, Vidal J (1992) Description de la cunéiformisation de la vertèbre apicale. In: Proceedings of the International Symposium on 3D Scoliotic Deformities. Fischer, Stuttgart, pp 244–249

  27. Parent S, Labelle H, Skalli W, de Guise J (2004) Vertebral wedging characteristic changes in scoliotic spines. Spine 29(20):E455–E462. doi:10.1097/01.brs.0000142430.65463.3a

    Article  Google Scholar 

  28. Stokes IA (2007) Analysis and simulation of progressive adolescent scoliosis by biomechanical growth modulation. Eur Spine J 16(10):1621–1628. doi:10.1007/s00586-007-0442-7

    Article  Google Scholar 

  29. Stokes IA, Gwadera J, Dimock A, Farnum CE, Aronsson DD (2005) Modulation of vertebral and tibial growth by compression loading: diurnal versus full-time loading. J Orthop Res 23(1):188–195. doi:10.1016/j.orthres.2004.06.012

    Article  Google Scholar 

  30. Stokes IA, Clark KC, Farnum CE, Aronsson DD (2007) Alterations in the growth plate associated with growth modulation by sustained compression or distraction. Bone 41(2):197–205. doi:10.1016/j.bone.2007.04.180

    Article  Google Scholar 

  31. Blount WP, Clarke GR (1949) Control of bone growth by epiphyseal stapling: a preliminary report. J Bone Joint Surg Am 31:464–478

    Google Scholar 

  32. Piggott H (1987) Growth modification in the treatment of scoliosis. Orthopedics 10:945–952

    CAS  Google Scholar 

  33. Roaf R (1960) Vertebral growth and its mechanical control. J Bone Joint Surg Br 42:40–59

    Google Scholar 

  34. Newton PO, Fricka KB, Lee SS, Farnsworth CL, Cox TG, Mahar AT (2002) Asymmetrical flexible tethering of spine growth in an immature bovine model. Spine 27(7):689–693. doi:10.1097/00007632-200204010-00004

    Article  Google Scholar 

  35. Newton PO, Faro FD, Farnsworth CL, Shapiro GS, Mohamad F, Parent S, Fricka K (2005) Multilevel spinal growth modulation with an anterolateral flexible tether in an immature bovine model. Spine 30(23):2608–2613. doi:10.1097/01.brs.0000188267.66847.bf

    Article  Google Scholar 

  36. Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN, Stefko RM (2003) Experimental scoliosis in an immature goat model: a method that creates idiopathic-type deformity with minimal violation of the spinal elements along the curve. Spine 28(19):2198–2203. doi:10.1097/01.BRS.0000085095.37311.46

    Article  Google Scholar 

  37. Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN (2004) Fusionless scoliosis correction using a shape memory alloy staple in the anterior thoracic spine of the immature goat. Spine 29(18):1980–1989. doi:10.1097/01.brs.0000138278.41431.72

    Article  Google Scholar 

  38. Braun JT, Akyuz E, Ogilvie JW, Bachus KN (2005) The efficacy and integrity of shape memory alloy staples and bone anchors with ligament tethers in the fusionless treatment of experimental scoliosis. J Bone Joint Surg Am 87(9):2038–2051. doi:10.2106/JBJS.D.02103

    Article  Google Scholar 

  39. Braun JT, Hoffman M, Akyuz E, Ogilvie JW, Brodke DS, Bachus KN (2006) Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model. Spine 31(12):1314–1320. doi:10.1097/01.brs.0000218662.78165.b1

    Article  Google Scholar 

  40. Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN (2006) Creation of an experimental idiopathic-type scoliosis in an immature goat model using a flexible posterior asymmetric tether. Spine 31(13):1410–1414. doi:10.1097/01.brs.0000219869.01599.6b

    Article  Google Scholar 

  41. Braun JT, Hines JL, Akyuz E, Vallera C, Ogilvie JW (2006) Relative versus absolute modulation of growth in the fusionless treatment of experimental scoliosis. Spine 31(16):1776–1782. doi:10.1097/01.brs.0000227263.43060.50

    Article  Google Scholar 

  42. Wall EJ, Bylski-Austrow DI, Kolata RJ, Crawford AH (2005) Endoscopic mechanical spinal hemiepiphysiodesis modifies spine growth. Spine 30(10):1148–1153. doi:10.1097/01.brs.0000162278.68000.91

    Article  Google Scholar 

  43. Akyuz E, Braun JT, Brown NA, Bachus KN (2006) Static versus dynamic loading in the mechanical modulation of vertebral growth. Spine 31(25):E952–E958. doi:10.1097/01.brs.0000248810.77151.22

    Article  Google Scholar 

  44. Akyuz E, Braun JT (2008) Cellular and molecular mechanisms in vertebral growth modulation. Oral presentation at 42nd SRS Meeting 2008, Edinburgh

  45. Lowe TG, Wilson L, Chien JT, Line BG, Klopp L, Wheeler D, Molz F (2005) A posterior tether for fusionless modulation of sagittal plane growth in a sheep model. Spine 30(Suppl 17):S69–S74. doi:10.1097/01.brs.0000175175.41471.d4

    Article  Google Scholar 

  46. Sanders JO, Sanders AE, More R, Ashman RB (1993) A preliminary investigation of shape memory alloys in the surgical correction of scoliosis. Spine 18(12):1640–1646. doi:10.1097/00007632-199309000-00012

    Article  CAS  Google Scholar 

  47. Kawakami N, Winter RB, Lonstein JE, Denis F (1994) Scoliosis secondary to rib resection. J Spinal Disord 7(6):522–527. doi:10.1097/00002517-199412000-00011

    CAS  Google Scholar 

  48. Deguchi M, Kawakami N, Kanemura T, Mimatsu K, Iwata H (1995) Experimental scoliosis induced by rib resection in chickens. J Spinal Disord 8(3):179–185. doi:10.1097/00002517-199506000-00001

    Article  CAS  Google Scholar 

  49. Sevastik B, Willers U, Hedlund R, Sevastik J, Kristjansson S (1993) Scoliosis induced immediately after mechanical medial rib elongation in the rabbit. Spine 18(7):923–926. doi:10.1097/00007632-199306000-00019

    Article  CAS  Google Scholar 

  50. Agadir M, Sevastik B, Sevastik JA, Svensson L (1989) Effects of intercostal nerve resection on the longitudinal rib growth in the growing rabbit. J Orthop Res 7(5):690–695. doi:10.1002/jor.1100070509

    Article  CAS  Google Scholar 

  51. Gréalou L, Aubin CE, Labelle H (2002) Rib cage surgery for the treatment of scoliosis: a biomechanical study of correction mechanisms. J Orthop Res 20(5):1121–1128. doi:10.1016/S0736-0266(02)00010-4

    Article  Google Scholar 

  52. Xiong B, Sevastik JA (1998) A physiological approach to surgical treatment of progressive early idiopathic scoliosis. Eur Spine J 7(6):505–508. doi:10.1007/s005860050115

    Article  CAS  Google Scholar 

  53. Andrew T, Piggott H (1985) Growth arrest for progressive scoliosis. Combined anterior and posterior fusion of the convexity. J Bone Joint Surg Br 67:193–197

    CAS  Google Scholar 

  54. Bradford DS (1982) Partial epiphyseal arrest and supplemental fixation for progressive correction of congenital spinal deformity. J Bone Joint Surg Am 64:610–614

    CAS  Google Scholar 

  55. Keller PM, Lindseth RE, DeRosa GP (1994) Progressive congenital scoliosis treatment using a transpedicular anterior and posterior convex hemiepiphysiodesis and hemiarthrodesis. A preliminary report. Spine 19:1933–1939

    Article  CAS  Google Scholar 

  56. Kieffer J, Dubousset J (1994) Combined anterior and posterior convex epiphysiodesis for progressive congenital scoliosis in children aged ≤ 5 years. Eur Spine J 3:120–125. doi:10.1007/BF02221453

    Article  CAS  Google Scholar 

  57. Winter RB (1981) Convex anterior and posterior hemiarthrodesis and hemiepiphyseodesis in young children with progressive congenital scoliosis. J Pediatr Orthop 1:361–366

    Article  CAS  Google Scholar 

  58. Winter RB, Haven JJ, Moe JH, Lagaard SM (1974) Diastematomyelia and congenital spine deformities. J Bone Joint Surg Am 56:27–39

    CAS  Google Scholar 

  59. Marks DS, Sayampanathan SR, Thompson AG, Piggott H (1995) Long-term results of convex epiphysiodesis for congenital scoliosis. Eur Spine J 4(5):296–301. doi:10.1007/BF00301039

    Article  CAS  Google Scholar 

  60. Uzumcugil A, Cil A, Yazici M, Acaroglu E, Alanay A, Aksoy C, Surat A (2004) Convex growth arrest in the treatment of congenital spinal deformities, revisited. J Pediatr Orthop 24(6):658–666. doi:10.1097/00004694-200411000-00013

    Article  Google Scholar 

  61. Cheung KM, Zhang JG, Lu DS, Luk KDK, Leong JCY (2002) Ten-year follow-up study of lower thoracic hemivertebrae treated by convex fusion and concave distraction. Spine 27(7):748–753

    Article  Google Scholar 

  62. Yazici M, Demirkiran HG, Ahmadi H, Ayvaz M, Alanay A, Acaroglu E (2007) Instrumented convex hemiepiphysiodesis in treatment of congenital scoliosis. J Child Orthop 1:255–276. doi:10.1007/s11832-007-0048-y

    Article  Google Scholar 

  63. Kioschos HC, Asher MA, Lark RG, Harner EJ (1996) Overpowering the crankshaft mechanism. The effect of posterior spinal fusion with and without stiff transpedicular fixation on anterior spinal column growth in immature canines. Spine 21(10):1168–1173. doi:10.1097/00007632-199605150-00008

    Article  CAS  Google Scholar 

  64. Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson AG, Asher MA (2005) Dual growing rod technique for the treatment of progressive early-onset scoliosis: a multicenter study. Spine 30(Suppl 17):S46–S57. doi:10.1097/01.brs.0000175190.08134.73

    Article  Google Scholar 

  65. Thompson GH, Akbarnia BA, Kostial P, Poe-Kochert C, Armstrong DG, Roh J, Lowe R, Asher MA, Marks DS (2005) Comparison of single and dual growing rod techniques followed through definitive surgery: a preliminary study. Spine 30(18):2039–2044. doi:10.1097/01.brs.0000179082.92712.89

    Article  Google Scholar 

  66. Thompson GH, Akbarnia BA, Campbell RM Jr (2007) Growing rod techniques in early-onset scoliosis. J Pediatr Orthop 27(3):354–361

    Article  Google Scholar 

  67. Campbell RM Jr, Hell-Vocke AK (2003) Growth of the thoracic spine in congenital scoliosis after expansion thoracoplasty. J Bone Joint Surg Am 85A(3):409–420

    Google Scholar 

  68. Campbell RM Jr, Smith MD, Hell-Vocke AK (2004) Expansion thoracoplasty: the surgical technique of opening-wedge thoracostomy. Surgical technique. J Bone Joint Surg Am 86A(Suppl 1):51–64

    Google Scholar 

  69. Campbell RM Jr, Smith MD, Mayes TC, Mangos JA, Willey-Courand DB, Kose N, Pinero RF, Alder ME, Duong HL, Surber JL (2004) The effect of opening wedge thoracostomy on thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am 86A(8):1659–1674

    Google Scholar 

  70. Yilmaz G, Yazici M, Demirkiran HG, Daglioglu K, Ozkan C (2007) Growing rod instrumentation and vertebral body growth: a radiological investigation in immature pigs. J Child Orthop 1:255–276. doi:10.1007/s11832-007-0048-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muharrem Yazici.

About this article

Cite this article

Akel, I., Yazici, M. Growth modulation in the management of growing spine deformities. J Child Orthop 3, 1–9 (2009). https://doi.org/10.1007/s11832-008-0145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11832-008-0145-6

Keywords

Navigation