Skip to main content
Log in

A Systematic Review on Fuzzy-Based Multi-objective Linear programming Methodologies: Concepts, Challenges and Applications

  • Review Article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This systematic review aims to evaluate the efficacy of fuzzy multi-objective optimization techniques in supporting decision-making in financial portfolio management under conditions of uncertainty. The review will critically appraise and compare different approaches to identify the most suitable technique for addressing the challenges posed by uncertain environments. Specifically, the review will investigate the use of mathematical models to find the optimal balance between competing objectives, such as maximizing return while minimizing risk, and provide a range of possible solutions based on different levels of uncertainty. Real-life decision-making scenarios involving the selection of investment options, such as stocks, bonds, mutual funds, or real estate, in the face of economic instability, political unrest, or natural disasters will be examined to provide practical insights. Through this review, we aim to contribute to the body of knowledge regarding effective strategies for financial portfolio management under conditions of uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Kuschel N, Rackwitz R (1997) Two basic problems in reliability-based structural optimization. Math Methods Oper Res 46:309-333

    Article  MathSciNet  MATH  Google Scholar 

  2. Gupta N et al (2022) Enhanced virtualization-based dynamic bin-packing optimized energy management solution for heterogeneous clouds. Math probl Eng. https://doi.org/10.1155/2022/8734198

    Article  Google Scholar 

  3. Alferaidi A, Yadav K, Alharbi Y, Viriyasitavat W, Kautish S, Dhiman G (2022) Federated learning algorithms to optimize the client and cost selections. Math probl Eng. https://doi.org/10.1155/2022/8514562

    Article  Google Scholar 

  4. Ammar EE (2005) On computational solution of vector maximum problem. Appl Math Comput 167(1):167-178. https://doi.org/10.1016/j.amc.2004.06.098

    Article  MathSciNet  MATH  Google Scholar 

  5. Minami M (1983) Weak Pareto-optima necessary conditions in a nondifferentiable multiobjective program on a Banach space. J Optim Theory Appl 41(3):451-461. https://doi.org/10.1007/BF00935364

    Article  MathSciNet  MATH  Google Scholar 

  6. Jiménez M, Bilbao A (2009) Pareto-optima solutions in fuzzy multi-objective linear programming. Fuzzy Sets Syst 160(18):2714-2721. https://doi.org/10.1016/j.fss.2008.12.005

    Article  MATH  Google Scholar 

  7. Yazdani M, Zarate p, KazimierasZavadskas E, Turskis Z (2019) A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag Decis 57(9):2501-2519. https://doi.org/10.1108/MD-05-2017-0458

    Article  Google Scholar 

  8. Bhati D, Singh p (2017) Branch and bound computational method for multi-objective linear fractional optimization problem. Neural Comput Appl 28(11):3341-3351. https://doi.org/10.1007/s00521-016-2243-6

    Article  Google Scholar 

  9. RajabalipourCheshmehgaz H, Desa MI, Wibowo A (2013) A flexible three-level logistic network design considering cost and time criteria with a multi-objective evolutionary algorithm. J Intell Manuf 24(2):277-293. https://doi.org/10.1007/s10845-011-0584-7

    Article  Google Scholar 

  10. da Silva AF, Marins FAS (2014) A Fuzzy Goal programming model for solving aggregate production-planning problems under uncertainty: a case study in a Brazilian sugar mill. Energy Econ 45:196-204. https://doi.org/10.1016/j.eneco.2014.07.005

    Article  Google Scholar 

  11. Wu Y et al (2020) Urban traffic signal control based on multiobjective joint optimization. Sci program. https://doi.org/10.1155/2020/8839720

    Article  Google Scholar 

  12. Huang Z, Fang B, Deng J (2020) Multi-objective optimization strategy for distribution network considering V2G-enabled electric vehicles in building integrated energy system. prot Control Mod power Syst. https://doi.org/10.1186/s41601-020-0154-0

    Article  Google Scholar 

  13. Cui Y, Geng Z, Zhu Q, Han Y (2017) Review: multi-objective optimization methods and application in energy saving. Energy 125:681-704. https://doi.org/10.1016/j.energy.2017.02.174

    Article  Google Scholar 

  14. Wang H, Olhofer M, Jin Y (2017) A mini-review on preference modeling and articulation in multi-objective optimization: current status and challenges. Complex Intell Syst 3(4):233-245. https://doi.org/10.1007/s40747-017-0053-9

    Article  Google Scholar 

  15. Soltanifar M (2021) An investigation of the most common multi-objective optimization methods with propositions for improvement. Decis Anal J 1:100005. https://doi.org/10.1016/j.dajour.2021.100005

    Article  Google Scholar 

  16. de Carvalho VR, Özcan E, Sichman JS (2021) Comparative analysis of selection hyper-heuristics for real-world multi-objective optimization problems. Appl Sci 11(19):9153. https://doi.org/10.3390/app11199153

    Article  Google Scholar 

  17. Khodadadi N, Abualigah L, Al-Tashi Q, Mirjalili S (2023) Multi-objective chaos game optimization. Neural Comput Appl. https://doi.org/10.1007/s00521-023-08432-0

    Article  Google Scholar 

  18. Ding Z, Chen Z, Liu J, Evrendilek F, He Y, Xie W (2022) Co-combustion, life-cycle circularity, and artificial intelligence-based multi-objective optimization of two plastics and textile dyeing sludge. J Hazard Mater 426:128069. https://doi.org/10.1016/j.jhazmat.2021.128069

    Article  Google Scholar 

  19. Alkurd R, Abualhaol IY, Yanikomeroglu H (2020) personalized resource allocation in wireless networks: an AI-enabled and big data-driven multi-objective optimization. IEEE Access 8:144592-144609. https://doi.org/10.1109/ACCESS.2020.3014301

    Article  Google Scholar 

  20. Gupta SK, pandey K, Kumar R (2018) Artificial intelligence-based modelling and multi-objective optimization of friction stir welding of dissimilar AA5083-O and AA6063-T6 aluminium alloys. proc Inst Mech Eng L 232(4):333-342. https://doi.org/10.1177/1464420715627293

    Article  Google Scholar 

  21. Reynoso-Meza G, Blasco X, Sanchis J, Martínez M (2014) Controller tuning using evolutionary multi-objective optimisation: current trends and applications. Control Eng pract 28:58-73. https://doi.org/10.1016/j.conengprac.2014.03.003

    Article  Google Scholar 

  22. Tzeng Y, Chen F (2007) Multi-objective optimisation of high-speed electrical discharge machining process using a Taguchi fuzzy-based approach. Mater Des 28(4):1159-1168. https://doi.org/10.1016/j.matdes.2006.01.028

    Article  Google Scholar 

  23. Sinuany-Stern Z (2023) Foundations of operations research: from linear programming to data envelopment analysis. Eur J Oper Res 306(3):1069-1080. https://doi.org/10.1016/j.ejor.2022.10.046

    Article  MathSciNet  MATH  Google Scholar 

  24. Dantzig GB (1983) Reminiscences about the origins of linear programming. In: Mathematical programming the state of the art. Springer, Berlin, pp 78-86. https://doi.org/10.1007/978-3-642-68874-4_4

  25. Lemke CE (1954) The dual method of solving the linear programming problem. Nav Res Logist Q 1(1):36-47. https://doi.org/10.1002/nav.3800010107

    Article  MathSciNet  Google Scholar 

  26. Russell B (1923) Vagueness. Australas J psychol philos 1(2):84-92. https://doi.org/10.1080/00048402308540623

    Article  Google Scholar 

  27. Lodwick WA, Jamison KD (2008) Interval-valued probability in the analysis of problems containing a mixture of possibilistic, probabilistic, and interval uncertainty. Fuzzy Sets Syst 159(21):2845-2858. https://doi.org/10.1016/j.fss.2008.03.013

    Article  MathSciNet  MATH  Google Scholar 

  28. Zadeh LA (2005) From imprecise to granular probabilities. Fuzzy Sets Syst 154(3):370-374. https://doi.org/10.1016/j.fss.2005.02.007

    Article  MATH  Google Scholar 

  29. Zimmermann H-J (n.d.) An application-oriented view of modeling uncertainty. www.elsevier.com/locate/orms

  30. Wong BK, Lai VS (2011) A survey of the application of fuzzy set theory in production and operations management: 1998-2009. Int J prod Econ 129(1):157-168. https://doi.org/10.1016/j.ijpe.2010.09.013

    Article  Google Scholar 

  31. Dubois D, prade H (2003) Fuzzy set and possibility theory-based methods in artificial intelligence. Artif Intell 148(1-2):1-9. https://doi.org/10.1016/S0004-3702(03)00118-8

    Article  MathSciNet  MATH  Google Scholar 

  32. Steimann F (2001) On the use and usefulness of fuzzy sets in medical AI. Artif Intell Med 21(1-3):131-137. https://doi.org/10.1016/S0933-3657(00)00077-4

    Article  Google Scholar 

  33. Deschrijver G, Kerre EE (2003) On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst 133(2):227-235. https://doi.org/10.1016/S0165-0114(02)00127-6

    Article  MathSciNet  MATH  Google Scholar 

  34. Heilpern S (1992) The expected value of a fuzzy number. Fuzzy Sets Syst 47(1):81-86. https://doi.org/10.1016/0165-0114(92)90062-9

    Article  MathSciNet  MATH  Google Scholar 

  35. Dubois D, prade H (1993) Fuzzy numbers: an overview. In: Readings in fuzzy sets for intelligent systems. Elsevier, Amsterdam, pp 112-148. https://doi.org/10.1016/B978-1-4832-1450-4.50015-8

  36. Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Manag Sci 17(4):B-141-B−164. https://doi.org/10.1287/mnsc.17.4.b141

    Article  MathSciNet  Google Scholar 

  37. Tanaka H, Asai K (1984) Fuzzy linear programming problems with fuzzy numbers. Fuzzy Sets Syst 13(1):1-10

    Article  MathSciNet  MATH  Google Scholar 

  38. Ghanbari R, Ghorbani-Moghadam K, Mahdavi-Amiri N, de Baets B (2020) Fuzzy linear programming problems: models and solutions. Soft Comput 24(13):10043-10073. https://doi.org/10.1007/s00500-019-04519-w

    Article  MATH  Google Scholar 

  39. Sharma S et al (2022) Deep learning model for the automatic classification of white blood cells. Comput Intell Neurosci. https://doi.org/10.1155/2022/7384131

    Article  Google Scholar 

  40. Dinesh Kumar R, Golden Julie E, Harold Robinson Y, Vimal S, Dhiman G, Veerasamy M (2022) Deep convolutional nets learning classification for artistic style transfer. Sci program. https://doi.org/10.1155/2022/2038740

    Article  Google Scholar 

  41. Sharma S et al (2022) Recognition of Gurmukhi handwritten city names using deep learning and cloud computing. Sci program. https://doi.org/10.1155/2022/5945117

    Article  Google Scholar 

  42. Ma W, Wan L, Yu C, Zou L, Zheng J (2020) Multi-objective optimization of traffic signals based on vehicle trajectory data at isolated intersections. Transp Res C. https://doi.org/10.1016/j.trc.2020.102821

    Article  Google Scholar 

  43. Shih L-H (1999) Cement transportation planning via fuzzy linear programming. Int J prod Econ 58(3):277-287. https://doi.org/10.1016/S0925-5273(98)00206-0

    Article  Google Scholar 

  44. Chanas S, Delgado M, Verdegay JL, Vila MA (1993) Interval and fuzzy extensions of classical transportation problems. Transp plan Technol 17(2):203-218. https://doi.org/10.1080/03081069308717511

    Article  Google Scholar 

  45. Yang C, Wang Z, Oh SK, pedrycz W, Yang B (2022) Ensemble fuzzy radial basis function neural networks architecture driven with the aid of multi-optimization through clustering techniques and polynomial-based learning. Fuzzy Sets Syst 438:62-83. https://doi.org/10.1016/j.fss.2021.06.014

    Article  MathSciNet  Google Scholar 

  46. Yue Q, Zhang F, Wang Y, Zhang X, Guo p (2021) Fuzzy multi-objective modelling for managing water-food-energy-climate change-land nexus towards sustainability. J Hydrol (Amst). https://doi.org/10.1016/j.jhydrol.2020.125704

    Article  Google Scholar 

  47. Jafarian-Moghaddam AR (2021) Economical speed for optimizing the travel time and energy consumption in train scheduling using a fuzzy multi-objective model. Urban Rail Transit 7(3):191-208. https://doi.org/10.1007/s40864-021-00151-w

    Article  Google Scholar 

  48. Ozdemir R et al (2021) Fuzzy multi-objective model for assembly line balancing with ergonomic risks consideration. Int J prod Econ. https://doi.org/10.1016/j.ijpe.2021.108188

    Article  Google Scholar 

  49. Ahmed JS, Mohammed HJ, Chaloob IZ (2021) Application of a fuzzy multi-objective defuzzification method to solve a transportation problem. Mater Today proc. https://doi.org/10.1016/j.matpr.2020.12.1062

    Article  Google Scholar 

  50. Zimmermann H-J (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst 1(1):45-55

    Article  MathSciNet  MATH  Google Scholar 

  51. Singh SK, Yadav Sp (2018) Intuitionistic fuzzy multi-objective linear programming problem with various membership functions. Ann Oper Res 269(1-2):693-707. https://doi.org/10.1007/s10479-017-2551-y

    Article  MathSciNet  MATH  Google Scholar 

  52. Karimi N, Feylizadeh MR, Govindan K, Bagherpour M (2022) Fuzzy multi-objective programming: a systematic literature review. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2022.116663

    Article  Google Scholar 

  53. Vasant pM (2005) Solving fuzzy linear programming problems with modified S-curve membership function. Int J Uncertain Fuzziness Knowl Based Syst 13(01):97-109. https://doi.org/10.1142/S0218488505003321

    Article  MathSciNet  MATH  Google Scholar 

  54. Vasant pM, Nagarajan R, Yaacob S (2002) Decision making using modified S-curve membership function in fuzzy linear programming problem. J Inf Commun Technol 2(2):1-16

    Google Scholar 

  55. Sakawa M (1983) Interactive computer programs for fuzzy linear programming with multiple objectives. Int J Man-Mach Stud 18(5):489-503

    Article  MATH  Google Scholar 

  56. peidro D, Vasant p (2009) Fuzzy multi-objective transportation planning with modified S-curve membership function. AIp Conf proc. https://doi.org/10.1063/1.3223935

    Article  MATH  Google Scholar 

  57. Oliinyk V, Kozmenko O (2019) optimization of investment portfolio management. Serb J Manag 14(2):373-387. https://doi.org/10.5937/sjm14-16806

    Article  Google Scholar 

  58. Wu Q, Liu X, Qin J, Zhou L, Mardani A, Deveci M (2022) An integrated multi-criteria decision-making and multi-objective optimization model for socially responsible portfolio selection. Technol Forecast Soc Change 184:121977. https://doi.org/10.1016/j.techfore.2022.121977

    Article  Google Scholar 

  59. Saborido R, Ruiz AB, Bermúdez JD, Vercher E, Luque M (2016) Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Appl Soft Comput 39:48-63. https://doi.org/10.1016/j.asoc.2015.11.005

    Article  MATH  Google Scholar 

  60. Ruiz AB, Saborido R, Bermúdez JD, Luque M, Vercher E (2020) preference-based evolutionary multi-objective optimization for portfolio selection: a new credibilistic model under investor preferences. J Glob Optim 76(2):295-315. https://doi.org/10.1007/s10898-019-00782-1

    Article  MathSciNet  MATH  Google Scholar 

  61. Bermúdez JD, Segura JV, Vercher E (2012) A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection. Fuzzy Sets Syst 188(1):16-26. https://doi.org/10.1016/j.fss.2011.05.013

    Article  MathSciNet  MATH  Google Scholar 

  62. Zarjou M, Khalilzadeh M (2022) optima project portfolio selection with reinvestment strategy considering sustainability in an uncertain environment: a multi-objective optimization approach. Kybernetes 51(8):2437-2460. https://doi.org/10.1108/K-11-2020-0737

    Article  Google Scholar 

  63. Shaw AK, Roy TK (2012) Some arithmetic operations on Triangular Intuitionistic Fuzzy Number and its application on reliability evaluation. http://www.ripublication.com

  64. Sudha T, Jayalalitha G (2020) Fuzzy triangular numbers in-Sierpinski triangle and right angle triangle. J phys Conf Ser. https://doi.org/10.1088/1742-6596/1597/1/012022

    Article  Google Scholar 

  65. Ramik J, Imanek J (1985) Inequality relation between fuzzy numbers and its use in fuzzy optimization

  66. Lai Y-J, Hwang C-L (1992) A new approach to some possibilistic linear programming problems. Fuzzy Sets Syst 49(2):121-133

    Article  MathSciNet  Google Scholar 

  67. Yang Xp, Cao BY, Lin HT (2014) Multi-objective fully fuzzy linear programming problems with triangular fuzzy numbers. In: 2014 11th International conference on fuzzy systems and knowledge discovery, FSKD 2014, December 2014. Institute of Electrical and Electronics Engineers, Inc., pp 171-177. https://doi.org/10.1109/FSKD.2014.6980827

  68. Ezzati R, Khorram E, Enayati R (2015) A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem. Appl Math Model 39(12):3183-3193. https://doi.org/10.1016/j.apm.2013.03.014

    Article  MathSciNet  MATH  Google Scholar 

  69. Kumar A, Kaur J, Singh p (2011) A new method for solving fully fuzzy linear programming problems. Appl Math Model 35(2):817-823. https://doi.org/10.1016/j.apm.2010.07.037

    Article  MathSciNet  MATH  Google Scholar 

  70. Khemiri R, Naija M, Exposito E (2022) Dispatching and rebalancing for ride-sharing autonomous mobility-on-demand systems based on a fuzzy multi-criteria approach. Soft Comput. https://doi.org/10.1007/s00500-022-07377-1

    Article  Google Scholar 

  71. Gulia p, Kumar R, Kaur A, Dhiman G (2022) A comparative study of fuzzy linear and multi-objective optimization. In: AI-enabled multiple-criteria decision-making approaches for healthcare management. IGI Global, pp 117-136

  72. Jana B, Roy TK (2005) Multi-objective fuzzy linear programming and its application in transportation model. Tamsui Oxf J Math Sci 21(2):243-269

    MathSciNet  MATH  Google Scholar 

  73. Gupta p, Mehlawat MK (2009) Bector-Chandra type duality in fuzzy linear programming with exponential membership functions. Fuzzy Sets Syst 160(22):3290-3308. https://doi.org/10.1016/j.fss.2009.04.012

    Article  MathSciNet  MATH  Google Scholar 

  74. Jana B, Kumar Roy T (nd) Multi-objective intuitionistic fuzzy linear programming and its application in transportation model

  75. Zangiabadi M, Maleki HR (2013) Fuzzy goal programming technique to solve multiobjective transportation problems with some non-linear membership functions. www.SID.ir

  76. Shen D, Saab SS (2021) Noisy output based direct learning tracking control with Markov nonuniform trial lengths using adaptive gains. IEEE Trans Autom Control 67(8):4123-4130

    Article  MathSciNet  MATH  Google Scholar 

  77. Sayour MH, Kozhaya SE, Saab SS (2022) Autonomous robotic manipulation: real-time, deep-learning approach for grasping of unknown objects. J Robot 2022:2585656

    Google Scholar 

  78. Shen D, Huo N, Saab SS (2021) A probabilistically quantized learning control framework for networked linear systems. IEEE Trans Neural Netw Learn Syst 33(12):7559-7573

    Article  MathSciNet  Google Scholar 

  79. Saab SS, Jaafar RH (2021) A proportional-derivative-double derivative controller for robot manipulators. Int J Control 94(5):1273-1285

    Article  MathSciNet  MATH  Google Scholar 

  80. Saab SS, Shen D, Orabi M, Kors D, Jaafar RH (2021) Iterative learning control: practical implementation and automation. IEEE Trans Ind Electron 69(2):1858-1866

    Article  Google Scholar 

  81. Dayan F, Rafiq M, Ahmed N, Baleanu D, Raza A, Ahmad MO, Iqbal M (2022) Design and numerical analysis of fuzzy nonstandard computational methods for the solution of rumor based fuzzy epidemic model. physica A 600:127542

    Article  MathSciNet  MATH  Google Scholar 

  82. Kouatli I (2020) The use of fuzzy logic as augmentation to quantitative analysis to unleash knowledge of participants’ uncertainty when filling a survey: case of cloud computing. IEEE Trans Knowl Data Eng 34(3):1489-1500

    Article  Google Scholar 

  83. Ben Abdallah S, Kouatli I (2020) Fuzzy volatility of project option value based on trapezoidal membership functions. In: Intelligent and fuzzy techniques in big data analytics and decision making: proceedings of the INFUS 2019 conference, Istanbul, Turkey, 23-25 July 2019. Springer, pp 1307-1314

  84. Abdallah SB, Kouatli I (2018) Fuzzy volatility effect on major projects timing. In: 2018 IEEE international conference on fuzzy systems (FUZZ-IEEE), 2018. IEEE, pp 1-6

  85. Azadeh A, Kalantari M, Ahmadi G, Eslami H (2019) A flexible genetic algorithm-fuzzy regression approach for forecasting: the case of bitumen consumption. Constr Innov 19(1):71-88

    Article  Google Scholar 

  86. Taheri R, Kabuli M, Vryzas Z (2020) Fracturing and permeability enhancement with laser technology employing fuzzy logic. J pet Sci Eng 188:106830

    Article  Google Scholar 

  87. Kouatli I (2018) Fuzzimetric employee evaluations system (FEES): a multivariable-modular approach. J Intell Fuzzy Syst 35(4):4717-4729

    Article  Google Scholar 

  88. Salloum G, Tekli J (2021) Automated and personalized nutrition health assessment, recommendation, and progress evaluation using fuzzy reasoning. Int J Hum-Comput Stud 151:102610

    Article  Google Scholar 

  89. Abboud R, Tekli J (2020) Integration of nonparametric fuzzy classification with an evolutionary-developmental framework to perform music sentiment-based analysis and composition. Soft Comput 24(13):9875-9925

    Article  Google Scholar 

  90. Ghanem CR, Gereige EN, Bou Nader WS, Mansour CJ (2022) Stirling system optimization for series hybrid electric vehicles. proc Inst Mech Eng D 236(2-3):407-423

    Article  Google Scholar 

  91. Abbas N, Fawaz W, Sharafeddine S, Mourad A, Abou-Rjeily C (2022) SVM-based task admission control and computation offloading using Lyapunov optimization in heterogeneous MEC network. IEEE Trans Netw Serv Manag 19(3):3121-3135

    Article  Google Scholar 

  92. Marrouche W, Farah R, Harmanani HM (2018) A multiobjective optimization method for the SOC test time, TAM, and power optimization using a strength Pareto evolutionary algorithm. In: Information technology-new generations: 14th international conference on information technology, 2018. Springer, pp 685-695

  93. Yusuf A, Sulaiman TA, Alshomrani AS, Baleanu D (2022) Optical solitons with nonlinear dispersion in parabolic law medium and three-component coupled nonlinear Schrödinger equation. Opt Quantum Electron 54(6):390

    Article  Google Scholar 

  94. Issa JS (2022) A nonlinear absorber for the reflection of travelling waves in bars. Nonlinear Dyn 108(4):3279-3295

    Article  Google Scholar 

  95. Tiwari AK, Bathia D, Bouri E, Gupta R (2021) Investor sentiment connectedness: evidence from linear and nonlinear causality approaches. Ann Financ Econ 16(04):2150016

    Article  Google Scholar 

  96. Tekli J, Tekli G, Chbeir R (2021) Almost linear semantic XML keyword search. In: proceedings of the 13th international conference on management of digital ecosystems, 2021, pp 129-138

  97. Chamoun S, Nour C (2021) A nonlinear ϕ0-convexity result for the bilateral minimal time function

  98. Kassis MT, Tannir D, Toukhtarian R, Khazaka R (2019) Moments-based sensitivity analysis of X-parameters with respect to linear and nonlinear circuit components. In: 2019 IEEE 28th conference on electrical performance of electronic packaging and systems (EpEpS), 2019. IEEE, pp 1-3

  99. Saab SS, Saab KK (2019) Shuffled linear regression with erroneous observations. In: 2019 53rd annual conference on information sciences and systems (CISS), 2019. IEEE, pp 1-6

  100. Bouri E, Gupta R, Wang S (2022) Nonlinear contagion between stock and real estate markets: international evidence from a local Gaussian correlation approach. Int J Finance Econ 27(2):2089-2109

    Article  Google Scholar 

  101. Hussain M, Kaassamani S, Auguste T, Boutu W, Gauthier D, Kholodtsova M, Gomes J-T et al (2021) Spectral control of high order harmonics through non-linear propagation effects. Appl phys Lett 119(7):071101

    Article  Google Scholar 

  102. Haraty RA, Mansour N, Zeitunlian H (2018) Metaheuristic algorithm for state-based software testing. Appl Artif Intell 32(2):197-213

    Article  Google Scholar 

  103. Tarhini A, Harfouche A, De Marco M (2022) Artificial intelligence-based digital transformation for sustainable societies: the prevailing effect of COVID-19 crises. pac Asia J Assoc Inf Syst 14(2):1

    Google Scholar 

  104. Nour C, Takche J (2020) A general result about inner regularization of sets. J Convex Anal 27(3):943-958

    MathSciNet  MATH  Google Scholar 

  105. Chicha E, Al Bouna B, Nassar M, Chbeir R, Haraty RA, Oussalah M, Benslimane D, NaserAlraja M (2021) A user-centric mechanism for sequentially releasing graph datasets under blowfish privacy. ACM Trans Internet Technol 21(1):1-25

    Article  Google Scholar 

  106. Mourad A, Tout H, Wahab OA, Otrok H, Dbouk T (2020) Ad hoc vehicular fog enabling cooperative low-latency intrusion detection. IEEE Internet Things J 8(2):829-843

    Article  Google Scholar 

  107. AbdulRahman S, Tout H, Mourad A, Talhi C (2020) FedMCCS: multicriteria client selection model for optima IoT federated learning. IEEE Internet of Things J 8(6):4723-4735

    Article  Google Scholar 

  108. Rahman SA, Tout H, Talhi C, Mourad A (2020) Internet of Things intrusion detection: centralized, on-device, or federated learning? IEEE Netw 34(6):310-317

    Article  Google Scholar 

  109. Khabbaz M, Assi C, Sharafeddine S (2021) Multihop V2U path availability analysis in UAV-assisted vehicular networks. IEEE Internet Things J 8(13):10745-10754

    Article  Google Scholar 

  110. Sorkhoh I, Ebrahimi D, Assi C, Sharafeddine S, Khabbaz M (2020) An infrastructure-assisted workload scheduling for computational resources exploitation in the fog-enabled vehicular network. IEEE Internet Things J 7(6):5021-5032

    Article  Google Scholar 

  111. Arafeh M, El Barachi M, Mourad A, Belqasmi F (2019) A blockchain based architecture for the detection of fake sensing in mobile crowdsensing. In: 2019 4th International conference on smart and sustainable technologies (SpliTech), 2019. IEEE, pp 1-6

  112. Haraty RA, Boukhari B, Kaddoura S (2021) An effective hash-based assessment and recovery algorithm for healthcare systems. Arab J Sci Eng 47:1-14

    Google Scholar 

  113. Yunis M, Markarian C, El-Kassar AN (2020) A conceptual model for sustainable adoption of eHealth: role of digital transformation culture and healthcare provider’s readiness. In: proceedings of the IMCIC, 2020

  114. Helwan A, Ma’aitah MKS, Uzelaltinbulat S, Altobel MZ, Darwish M (2021) Gaze prediction based on convolutional neural network. In: International conference on emerging technologies and intelligent systems, 2021. Springer, Cham, pp 215-224

  115. Gerges F, Shih F, Azar D (2021) Automated diagnosis of Acne and Rosacea using convolution neural networks. In: 2021 4th International conference on artificial intelligence and pattern recognition, 2021, pp 607-613

  116. Abbas N, Nasser Y, Shehab M, Sharafeddine S (2021) Attack-specific feature selection for anomaly detection in software-defined networks. In: 2021 3rd IEEE Middle East and North Africa COMMunications conference (MENACOMM), 2021. IEEE, pp 142-146

  117. Tarhini A, Danach K, Harfouche A (2020) Swarm intelligence-based hyper-heuristic for the vehicle routing problem with prioritized customers. Ann Oper Res 308:1-22

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Dhiman.

Additional information

publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulia, P., Kumar, R., Viriyasitavat, W. et al. A Systematic Review on Fuzzy-Based Multi-objective Linear programming Methodologies: Concepts, Challenges and Applications. Arch Computat Methods Eng 30, 4983–5022 (2023). https://doi.org/10.1007/s11831-023-09966-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09966-1

Navigation