Skip to main content
Log in

Portfolio Selection Using Z-Number Theory: Two Solution Methodologies

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The Z-number theory is a new concept in fuzzy logic. This theory describes the uncertainty of information where any Z-number is displayed by a pair of fuzzy numbers. The first component of the Z-number creates a restriction on the uncertain variable through a fuzzy number, while the second component of the Z-number explains the reliability of the first component through another fuzzy number. Because there is no any accurate image of the future of financial markets, the Z-number theory can be widely used in the financial markets widely. In this paper, the theory of Z-number is investigated in portfolio selection problem using the utility function. The Z-number is almost always converted to classical fuzzy number in the existing literature. Although this approach reduces the computational complexity, converting Z-number to classical fuzzy number causes the loss of significant information. Hence, we propose two practical models with Z-number approach and optimize them both with and without converting Z-number to classical fuzzy number. Optimization without converting Z-number causes the information about utility of assets and their reliability to be available in each stage. However, optimization with converting Z-number causes portfolio selection model to be transformed into a linear programming model. Furthermore, a practical method for obtaining the utility of assets in shape of the Z-numbers is introduced. In addition, liquidity constraint and the maximal fraction of the capital allocated constraint are considered in portfolio selection models. Eventually, two numerical examples from NYSE and NASDAQ Stock Market are provided, and the results are compared with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zadeh, L.A.: A note on Z-numbers. Inf. Sci. 181(14), 2923–2932 (2011)

    Article  Google Scholar 

  2. Kang, B., Wei, D., Li, Y., Deng, Y.: A method of converting Z-number to classical fuzzy number. J Inf. Comput. Sci. 9(3), 703–709 (2012)

    Google Scholar 

  3. Kang, B., Wei, D., Li, Y., Deng, Y.: Decision making using Z-numbers under uncertain environment. J. Comput. Inf. Syst. 8(7), 2807–2814 (2012)

    Google Scholar 

  4. Azadeh, A., Saberi, M., Atashbar, N.Z., Chang, E.J., Pazhoheshfar, P.: Z-AHP: a Z-number extension of fuzzy analytical hierarchy process. In: 7th IEEE International Conference on Digital Ecosystems and Technologies (DEST), pp. 141–147 (2013)

  5. Pal, S.K., Banerjee, R., Dutta, S., Sarma, S.S.: An insight into the Z-number approach to CWW. Fundam. Inf. 124(1–2), 197–229 (2013)

    MathSciNet  Google Scholar 

  6. Sadi-Nezhad, S., Sotoudeh-Anvari, A.: A new data envelopment analysis under uncertain environment with respect to fuzziness and an estimation of reliability. OPSEARCH 53, 103–115 (2016)

    Article  MathSciNet  Google Scholar 

  7. Azadeh, A., Kokabi, R.: Z-number DEA: a new possibilistic DEA in the context of Z-numbers. Adv. Eng. Inform. 30(3), 604–617 (2016)

    Article  Google Scholar 

  8. Aliev, R.A., Zeinalova, L.M.: Decision making under Z-information. In: Guo, P., Pedrycz, W. (eds.) Human-Centric Decision-Making Models for Social Sciences, Studies in Computational Intelligence, vol. 502, pp. 233–252. Springer, Berlin (2014)

    Chapter  Google Scholar 

  9. Aliev, R.A., Alizadeh, A.V., Huseynov, O.H., Jabbarova, K.I.: Z-number-based linear programming. Int. J. Intell. Syst. 30(5), 563–589 (2015)

    Article  Google Scholar 

  10. Kumar, A., Singh, P., Kaur, J.: Generalized simplex algorithm to solve fuzzy linear programming problems with ranking of generalized fuzzy numbers. Turk. J. Fuzzy Syst. 1(2), 80–103 (2010)

    Google Scholar 

  11. Zimmermann, H.J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1(1), 45–55 (1978)

    Article  MathSciNet  Google Scholar 

  12. Delgado, M., Verdegay, J.L., Vila, M.A.: A general model for fuzzy linear programming. Fuzzy Sets Syst. 29(1), 21–29 (1989)

    Article  MathSciNet  Google Scholar 

  13. Inuiguchi, M., Ichihashi, H., Kume, Y.: A solution algorithm for fuzzy linear programming with piecewise linear membership functions. Fuzzy Sets Syst. 34(1), 15–31 (1990)

    Article  MathSciNet  Google Scholar 

  14. Ramík, J.: Duality in fuzzy linear programming: some new concepts and results. Fuzzy Optim. Decis. Mak. 4(1), 25–39 (2005)

    Article  MathSciNet  Google Scholar 

  15. Rommelfanger, H.: A general concept for solving linear multicriteria programming problems with crisp, fuzzy or stochastic values. Fuzzy Sets Syst. 158(17), 1892–1904 (2007)

    Article  MathSciNet  Google Scholar 

  16. Dempe, S., Ruziyeva, A.: On the calculation of a membership function for the solution of a fuzzy linear optimization problem. Fuzzy Sets Syst. 188(1), 58–67 (2012)

    Article  MathSciNet  Google Scholar 

  17. Luhandjula, M.K., Rangoaga, M.J.: An approach for solving a fuzzy multiobjective programming problem. Eur. J. Oper. Res. 232(2), 249–255 (2014)

    Article  MathSciNet  Google Scholar 

  18. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  19. Markowitz, H.: Foundations of portfolio theory. J. Finance 46(2), 469–477 (1991)

    Article  Google Scholar 

  20. Konno, H., Yamazaki, H.: Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manag. Sci. 37(5), 519–531 (1991)

    Article  Google Scholar 

  21. Speranza, M.G.: Linear programming models for portfolio optimization. Finance 14, 107–123 (1993)

    Google Scholar 

  22. Gupta, P., Inuiguchi, M., Mehlawat, M.K., Mittal, G.: Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints. Inf. Sci. 229, 1–17 (2013)

    Article  MathSciNet  Google Scholar 

  23. Najafi, A.A., Pourahmadi, Z.: An efficient heuristic method for dynamic portfolio selection problem under transaction costs and uncertain conditions. Physica A 448, 154–162 (2016)

    Article  MathSciNet  Google Scholar 

  24. Huang, X.: Mean-semivariance models for fuzzy portfolio selection. J. Comput. Appl. Math. 217(1), 1–8 (2008)

    Article  MathSciNet  Google Scholar 

  25. Liu, S.T.: A fuzzy modeling for fuzzy portfolio optimization. Expert Syst. Appl. 38(11), 13803–13809 (2011)

    Google Scholar 

  26. Ghahtarani, A.R., Najafi, A.A.: A fuzzy approach to mean-CDaR portfolio optimization. Int. J. Appl. Oper. Res. 3(3), 95–104 (2013)

    Google Scholar 

  27. Liu, Y.J., Zhang, W.G.: A multi-period fuzzy portfolio optimization model with minimum transaction lots. Eur. J. Oper. Res. 242(3), 933–941 (2015)

    Article  MathSciNet  Google Scholar 

  28. Jirofti, A., Najafi, A.A.: Investment portfolio optimization using value at risk under credibility theory with Z-numbers approach. Financ. Eng. Secur. Manag. 8(30), 95–113 (2017). (In Farsi)

    Google Scholar 

  29. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—II. Inf. Sci. 8(4), 301–357 (1975)

    Article  MathSciNet  Google Scholar 

  30. Chen, S.M., Chen, J.H.: Fuzzy risk analysis based on ranking generalized fuzzy numbers with different heights and different spreads. Expert Syst. Appl. 36(3), 6833–6842 (2009)

    Article  Google Scholar 

  31. Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10, 445–450 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Abbas Najafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jirofti, A., Najafi, A.A. Portfolio Selection Using Z-Number Theory: Two Solution Methodologies. Int. J. Fuzzy Syst. 20, 2484–2496 (2018). https://doi.org/10.1007/s40815-018-0513-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0513-4

Keywords

Navigation