Skip to main content
Log in

Computational Medical Image Reconstruction Techniques: A Comprehensive Review

  • Survey article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Medical image reconstruction (MIR) is the elementary way of producing an internal 3D view of the patient. MIR is inherently ill-posed, and various approaches have been proposed to address to resolve the ill-posedness. Recent inverse problem aims to create a mathematically consistent framework for merging data-driven models, particularly based on machine learning and deep learning, with domain-specific information contained in physical–analytical models. This study aims to discuss some of the significant contributions of data-driven techniques to solve the inverse problems in MIR. This paper provides a detailed survey of MIR which includes the traditional reconstruction algorithm, machine learning and deep learning-based approaches such as GAN, autoencoder, RNN, U-net, etc., to solve inverse problems, evaluation metrics, and openly available codes used in the literature. This paper also summarises the contribution of the most recent state-of-the-art methods used in MIR. The potentially attractive strategic paths for future study and fundamental problems in MIR are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hsieh J et al (2013) Recent advances in CT image reconstruction. Curr Radiol Rep 1(1):39–51. https://doi.org/10.1007/s40134-012-0003-7

    Article  Google Scholar 

  2. Kajla V et al (2018) Analysis of X-ray images with image processing techniques: a review. In: 2018 4th international conference on computing communication and automation (ICCCA). IEEE, pp 1–4. https://doi.org/10.1109/CCAA.2018.8777693

  3. Crooks LE (1985) An introduction to magnetic resonance imaging. IEEE Eng Med Biol Mag 4(3):8–15. https://doi.org/10.1109/MEMB.1985.5006193

    Article  Google Scholar 

  4. Jaszczak RJ et al (1980) SPECT: single photon emission computed tomography. IEEE Trans Nucl Sci 27(3):1137–1153. https://doi.org/10.1109/TNS.1980.4330986

    Article  Google Scholar 

  5. Shukla AK, Kumar U (2006) Positron emission tomography: an overview. J Med Phys 31(1):13. https://doi.org/10.4103/0971-6203.25665

    Article  Google Scholar 

  6. Andrew W, George CK (2003) Introduction to biomedical imaging. Med Phys 30(8):2267–2267. https://doi.org/10.1118/1.1589017

    Article  Google Scholar 

  7. Kanitsar A et al (2001) Computed tomography angiography: a case study of peripheral vessel investigation. In: Proceedings visualization. VIS ’01. IEEE, pp 477–593. https://doi.org/10.1109/VISUAL.2001.964555

  8. Cappabianco FA, Shida CS et al (2016) Introduction to research in magnetic resonance imaging. In: 2016 29th SIBGRAPI conference on graphics, patterns and images tutorials (SIBGRAPI-T). IEEE, pp 1–14. https://doi.org/10.1109/SIBGRAPI-T.2016.010

  9. Hounsfield GN (1973) Computerized transverse axial scanning (Tomography): Part 1. Description of system. Br J Radiol 46(552):1016–1022. https://doi.org/10.1259/0007-1285-46-552-1016

    Article  Google Scholar 

  10. Aarsvold JN, Miles NW (2004) Emission tomography: the fundamentals of pet and spect. Elsevier, Open WorldCat. http://www.123library.org/book_details/?id=42889

  11. Geyer LL et al (2015) State of the art: iterative CT reconstruction techniques. Radiology 276(2):339–357. https://doi.org/10.1148/radiol.2015132766

    Article  Google Scholar 

  12. Gordon R (1974) A tutorial on art (algebraic reconstruction techniques). IEEE Trans Nucl Sci 21(3):78–93. https://doi.org/10.1109/TNS.1974.6499238

    Article  Google Scholar 

  13. Schofield R et al (2020) Image reconstruction: Part 1 – understanding filtered back projection, noise and image acquisition. J Cardiovasc Comput Tomogr 14(3):219–225. https://doi.org/10.1016/j.jcct.2019.04.008

    Article  Google Scholar 

  14. Hara AK et al (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol 193(3):764–771. https://doi.org/10.2214/AJR.09.2397

    Article  Google Scholar 

  15. Wu Q et al (2017) The application of deep learning in computer vision. In: 2017 Chinese automation congress (CAC). IEEE, pp 6522–6527. https://doi.org/10.1109/CAC.2017.8243952

  16. Jia Y et al (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia, association for computing machinery. ACM Digital Library, pp 675–78. https://doi.org/10.1145/2647868.2654889

  17. Kukačka J et al (2017) Regularization for deep learning: a taxonomy. https://doi.org/10.48550/ARXIV.1710.10686

  18. Ahishakiye E et al (2021) A survey on deep learning in medical image reconstruction. Intell Med 1(3):118–127. https://doi.org/10.1016/j.imed.2021.03.003

    Article  Google Scholar 

  19. Zhou T et al (2022) Dense convolutional network and its application in medical image analysis. BioMed Res Int 2022:e2384830. https://doi.org/10.1155/2022/2384830

    Article  Google Scholar 

  20. Krizhevsky A et al (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  21. Tajbakhsh N et al (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312. https://doi.org/10.1109/TMI.2016.2535302

    Article  Google Scholar 

  22. He K et al (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 770–78. https://doi.org/10.1109/CVPR.2016.90

  23. Goodfellow IJ et al (2014) Generative adversarial networks. http://arxiv.org/abs/1406.2661

  24. Yavuz M, Fessler JA (1998) statistical image reconstruction methods for randoms-precorrected PET scans. Med Image Anal 2(4):369–378. https://doi.org/10.1016/S1361-8415(98)80017-0

    Article  Google Scholar 

  25. Cheng J, Hofmann B (2011) Regularization methods for ill-posed problems. In: Scherzer O (ed) Handbook of mathematical methods in imaging. Springer, New York, pp 87–109

    Chapter  Google Scholar 

  26. Perelli A, Davies ME (2015) Compressive computed tomography image reconstruction with denoising message passing algorithms. In: 2015 23rd European Signal Processing Conference (EUSIPCO). IEEE, pp 2806–2010. https://doi.org/10.1109/EUSIPCO.2015.7362896

  27. Liu H et al (2018) Image inpainting based on generative adversarial networks. In: 2018 14th International conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD). IEEE, pp 373–78. https://doi.org/10.1109/FSKD.2018.8686914

  28. Pavlovic G, Tekalp AM (1992) Maximum likelihood parametric blur identification based on a continuous spatial domain model. IEEE Trans Image Process 1(4):496–504. https://doi.org/10.1109/83.199919

    Article  Google Scholar 

  29. (2008) Algebraic and statistical reconstruction methods. In: Computed tomography. Springer, Berlin Heidelberg, pp 201–40. https://doi.org/10.1007/978-3-540-39408-2_6

  30. Dobosz P (2012) An analytical approach to the image reconstruction problem using EM algorithm. In: Rutkowski L (ed) Artificial intelligence and soft computing, vol 7267. Springer, Berlin Heidelberg, pp 495–500

    Chapter  Google Scholar 

  31. Gouia-Zarrad R (2014) Analytical reconstruction formula for n -dimensional conical radon transform. Comput Math Appl 68(9):1016–1023. https://doi.org/10.1016/j.camwa.2014.04.019

    Article  MathSciNet  MATH  Google Scholar 

  32. McCann MT, Unsen M (2019) Biomedical image reconstruction: from the foundations to deep neural networks. Found Trends Signal Process 13(3):283–357. https://doi.org/10.1561/2000000101

    Article  MathSciNet  Google Scholar 

  33. Fessler JA (2017) Medical image reconstruction: a brief overview of past milestones and future directions. http://arxiv.org/abs/1707.05927

  34. Renker M et al (2011) Iterative image reconstruction techniques: applications for cardiac CT. J Cardiovasc Comput Tomogr 5(4):225–230. https://doi.org/10.1016/j.jcct.2011.05.002

    Article  Google Scholar 

  35. Dong B et al (2015) Image restoration: a data-driven perspective. In Proceedings of the international congress of industrial and applied mathematics (ICIAM). Citeseer, pp 65–108

  36. Rudin LI et al (1992) Nonlinear total variation based noise removal algorithms. Physica D 60(1):259–268. https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  MATH  Google Scholar 

  37. Buades A et al (2011) Non-local means denoising. Image Process On Line 1:208–212. https://doi.org/10.5201/ipol.2011.bcm_nlm

    Article  Google Scholar 

  38. Zhang K et al (2022) SOUP-GAN: super-resolution MRI using generative adversarial networks. Tomography 8(2):905–919. https://doi.org/10.3390/tomography8020073

    Article  Google Scholar 

  39. Tensor Dictionary Learning with an Enhanced Sparsity Constraint for Sparse-View Spectral CT Reconstruction

  40. Xie Q et al (2017) Robust low-dose CT sinogram preprocessing via exploiting noise-generating mechanism. IEEE Trans Med Imaging 36(12):2487–2498. https://doi.org/10.1109/TMI.2017.2767290

    Article  Google Scholar 

  41. Zhang Y et al (2017) Low-dose lung ct image restoration using adaptive prior features from full-dose training database. IEEE Trans Med Imaging 36(12):2510–2523. https://doi.org/10.1109/TMI.2017.2757035

    Article  Google Scholar 

  42. Andersen A (1984) Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason Imaging 6(1):81–94. https://doi.org/10.1016/0161-7346(84)90008-7

    Article  Google Scholar 

  43. Willemink MJ et al (2013) Iterative reconstruction techniques for computed tomography part 1: technical principles. Eur Radiol 23(6):1623–1631. https://doi.org/10.1007/s00330-012-2765-y

    Article  Google Scholar 

  44. Mango LJ (1994) Computer-assisted cervical cancer screening using neural networks. Cancer Lett 77(2–3):155–162. https://doi.org/10.1016/0304-3835(94)90098-1

    Article  Google Scholar 

  45. Hamad YA et al (2018) Breast cancer detection and classification using artificial neural networks. In: 2018 1st annual international conference on information and sciences (AiCIS). IEEE, pp 51–57. https://doi.org/10.1109/AiCIS.2018.00022

  46. Hassanien AE et al (2014) MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier. Appl Soft Comput 14:62–71. https://doi.org/10.1016/j.asoc.2013.08.011

    Article  Google Scholar 

  47. Knickerbocker JU et al (2018) Heterogeneous integration technology demonstrations for future healthcare, IoT, and AI computing solutions. In: 2018 IEEE 68th electronic components and technology conference (ECTC). IEEE Xplore, pp 1519–28. https://doi.org/10.1109/ECTC.2018.00231

  48. Floyd CE (1991) An artificial neural network for SPECT image reconstruction. IEEE Trans Med Imaging 10(3):485–487. https://doi.org/10.1109/42.97600

    Article  Google Scholar 

  49. Boublil D et al (2015) Spatially-adaptive reconstruction in computed tomography using neural networks. IEEE Trans Med Imaging 34(7):1474–1485. https://doi.org/10.1109/TMI.2015.2401131a

    Article  Google Scholar 

  50. Wang G et al (2018) Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 37(6):1289–1296. https://doi.org/10.1109/TMI.2018.2833635

    Article  Google Scholar 

  51. Grossi E, Buscema M (2007) Introduction to artificial neural networks. Eur J Gastroenterol Hepatol 19(12):1046–1054. https://doi.org/10.1097/MEG.0b013e3282f198a0

    Article  Google Scholar 

  52. Singh R et al (2020) Artificial intelligence in image reconstruction: the change is here. Physica Med 79:113–125. https://doi.org/10.1016/j.ejmp.2020.11.012

    Article  Google Scholar 

  53. McCann MT et al (2017) convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Process Mag 34(6):85–95. https://doi.org/10.1109/MSP.2017.2739299

    Article  Google Scholar 

  54. Shireesha M et al (2020) Image reconstruction using deep convolutional neural network. In: 2020 international conference on artificial intelligence and signal Processing (AISP). IEEE, pp 1–6. https://doi.org/10.1109/AISP48273.2020.9073016

  55. Adler J, Oktem O (2018) Learned primal-dual reconstruction. IEEE Trans Med Imaging 37(6):1322–1332. https://doi.org/10.1109/TMI.2018.2799231

    Article  Google Scholar 

  56. Zhang HM, Dong B (2019) A review on deep learning in medical image reconstruction. J Oper Res Soc China 8:311. https://doi.org/10.48550/ARXIV.1906.10643

    Article  MathSciNet  MATH  Google Scholar 

  57. Aharon M et al (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322. https://doi.org/10.1109/TSP.2006.881199

    Article  MATH  Google Scholar 

  58. Tony CT, Wang L (2011) Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans Inf Theory 57(7):4680–4688. https://doi.org/10.1109/TIT.2011.2146090

    Article  MathSciNet  MATH  Google Scholar 

  59. Caballero J et al (2014) Dictionary learning and time sparsity for dynamic MR data reconstruction. IEEE Trans Med Imaging 33(4):979–994. https://doi.org/10.1109/TMI.2014.2301271

    Article  Google Scholar 

  60. X2CT-GAN: Reconstructing CT from Biplanar X-Rays with Generative Adversarial Networks

  61. Kang E et al (2017) A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys 44(10):e360–e375. https://doi.org/10.1002/mp.12344

    Article  Google Scholar 

  62. Putzky P, Welling M (2017) Recurrent inference machines for solving inverse problems. http://arxiv.org/abs/1706.04008

  63. Paschalis P et al (2004) tomographic image reconstruction using artificial neural networks. Nucl Instrum Methods Phys Res Sect A 527(1–2):211–215. https://doi.org/10.1016/j.nima.2004.03.122

    Article  Google Scholar 

  64. Jin KH, McCann MT et al (2017) Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process 26(9):4509–4522. https://doi.org/10.1109/TIP.2017.2713099

    Article  MathSciNet  MATH  Google Scholar 

  65. Calatroni L et al (2015) Bilevel approaches for learning of variational imaging models. http://arxiv.org/abs/1505.02120

  66. Chung C et al (2016) Learning optimal spatially-dependent regularization parameters in total variation image restoration. http://arxiv.org/abs/1603.09155

  67. Rick Chang JH et al (2017) One network to solve them all—Solving linear inverse problems using deep projection models. http://arxiv.org/abs/1703.09912

  68. Johnson J et al (2016) Perceptual losses for real-time style transfer and super-resolution. In: Bastian L (ed) Computer vision – ECCV 2016. Springer International Publishing, New York, pp 694–711

    Chapter  Google Scholar 

  69. Rudzusika J et al (2021) Deep learning based dictionary learning and tomographic image reconstruction. http://arxiv.org/abs/2108.11730

  70. Hammernik K et al (2018) Learning a variational network for reconstruction of accelerated MRI data: learning a variational network for reconstruction of accelerated MRI data. Magn Resonance Med 79(6):3055–3071. https://doi.org/10.1002/mrm.26977

    Article  Google Scholar 

  71. Mardani M et al (2017) Deep generative adversarial networks for compressed sensing automates MRI. https://doi.org/10.48550/ARXIV.1706.00051

  72. Wang G et al (2020) Deep learning for tomographic image reconstruction. Nat Mach Intell 2(12):737–748. https://doi.org/10.1038/s42256-020-00273-z

    Article  Google Scholar 

  73. Bai J et al (2018) Limited-view CT reconstruction based on autoencoder-like generative adversarial networks with joint loss. In: 2018 40th Annual International conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5570–74. https://doi.org/10.1109/EMBC.2018.8513659

  74. Liang K et al (2018) Improve angular resolution for sparse-view CT with residual convolutional neural network. In: GH Chen (eds) Medical imaging 2018: physics of medical imaging. SPIE, p 55. https://doi.org/10.1117/12.2293319

  75. Claus BE, Jin Y, Gjesteby LA, Wang G, De Man B (2017) Metal-artifact reduction using deep-learning based sinogram completion: initial results. In: Proceedings of 14th international meeting fully three-dimensional image reconstruction radiology nuclear medicine, pp 631–634

  76. Ghani MU, Karl WC (2020) Fast enhanced CT metal artifact reduction using data domain deep learning. IEEE Trans Comput Imaging 6:181–193. https://doi.org/10.1109/TCI.2019.2937221

    Article  Google Scholar 

  77. Chen Y et al (2012) Thoracic low-dose ct image processing using an artifact suppressed large-scale nonlocal means. Phys Med Biol 57(9):2667–2688. https://doi.org/10.1088/0031-9155/57/9/2667

    Article  Google Scholar 

  78. Alzain AF et al (2021) Common computed tomography artifact: source and avoidance. Egypt J Radiol Nucl Med 52(1):151. https://doi.org/10.1186/s43055-021-00530-0

    Article  Google Scholar 

  79. Mustafa W et al (2021) Sparse-view spectral CT reconstruction using deep learning. http://arxiv.org/abs/2011.14842

  80. Lee D et al (2018) Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans Biomed Eng 65(9):1985–1995. https://doi.org/10.1109/TBME.2018.2821699

    Article  Google Scholar 

  81. Gong K et al (2019) PET image reconstruction using deep image prior. IEEE Trans Med Imaging 38(7):1655–1665. https://doi.org/10.1109/TMI.2018.2888491

    Article  Google Scholar 

  82. Qian H et al (2017) Deep learning models for PET scatter estimations. In: 2017 IEEE nuclear science symposium and medical imaging conference (NSS/MIC). IEEE, pp 1–5. https://doi.org/10.1109/NSSMIC.2017.8533103

  83. Wolterink JM et al (2017) Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 36(12):2536–2545. https://doi.org/10.1109/TMI.2017.2708987

    Article  Google Scholar 

  84. Yang G et al (2018) DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging 37(6):1310–1321. https://doi.org/10.1109/TMI.2017.2785879

    Article  Google Scholar 

  85. Bubba TA et al (2019) Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography. Inverse Probl 35(6):064002. https://doi.org/10.1088/1361-6420/ab10ca

    Article  MathSciNet  MATH  Google Scholar 

  86. Kutyniok G, Labate D (eds) (2012) Shearlets: multiscale analysis for multivariate data. Birkhäuser

  87. Zhang Y, Yu H (2018) Convolutional neural network based metal artifact reduction in X-ray computed tomography. IEEE Trans Med Imaging 37(6):1370–1381. https://doi.org/10.1109/TMI.2018.2823083

    Article  Google Scholar 

  88. Shan H et al (2019) Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat Mach Intell 1(6):269–276. https://doi.org/10.1038/s42256-019-0057-9

    Article  Google Scholar 

  89. Auto encoder based dimensionality reduction and classification using convolutional neural networks for hyperspectral images

  90. Yang Y et al (2017) ADMM-Net: a deep learning approach for compressive sensing MRI. http://arxiv.org/abs/1705.06869

  91. Gupta H et al (2018) CNN-based projected gradient descent for consistent CT image reconstruction. IEEE Trans Med Imaging 37(6):1440–1453. https://doi.org/10.1109/TMI.2018.2832656

    Article  Google Scholar 

  92. Wu D et al (2017) Iterative low-dose CT reconstruction with priors trained by artificial neural network. IEEE Trans Med Imaging 36(12):2479–2486. https://doi.org/10.1109/TMI.2017.2753138

    Article  Google Scholar 

  93. Chen H et al (2018) LEARN: learned experts’ assessment-based reconstruction network for sparse-data CT. IEEE Trans Med Imaging 37(6):1333–1347. https://doi.org/10.1109/TMI.2018.2805692

    Article  Google Scholar 

  94. Buzzard GT et al (2018) Plug-and-play unplugged: optimization-free reconstruction using consensus equilibrium. SIAM J Imaging Sci 11(3):2001–2020. https://doi.org/10.1137/17M1122451

    Article  MathSciNet  MATH  Google Scholar 

  95. Ulyanov D et al (2020) Deep image prior. http://arxiv.org/abs/1711.10925. https://doi.org/10.1007/s11263-020-01303-4

  96. Thaler F et al (2018) Sparse-view CT reconstruction using wasserstein GANs. In: Knoll F (ed) Machine learning for medical image reconstruction. Springer, Cham, pp 75–82

    Chapter  Google Scholar 

  97. Ben Yedder H et al (2018) Deep learning based image reconstruction for diffuse optical tomography. In: Knoll F (ed) Machine learning for medical image reconstruction. Springer, Cham, pp 112–119

    Chapter  Google Scholar 

  98. Ben Yedder H et al (2019) Limited-angle diffuse optical tomography image reconstruction using deep learning. In: Shen D (ed) Medical image computing and computer assisted intervention – MICCAI, vol 11764. Springer, Cham, pp 66–74

    Google Scholar 

  99. Zhu B et al (2018) Image reconstruction by domain-transform manifold learning. Nature 555(7697):487–492. https://doi.org/10.1038/nature25988

    Article  Google Scholar 

  100. Zhou B et al (2019) Limited angle tomography reconstruction: synthetic reconstruction via unsupervised sinogram adaptation. In: Chung ACS (ed) Information processing in medical imaging, vol 11492. Springer, Cham, pp 141–152

    Chapter  Google Scholar 

  101. Oksuz I et al (2020) Deep learning-based detection and correction of cardiac MR motion artefacts during reconstruction for high-quality segmentation. IEEE Trans Med Imaging 39(12):4001–4010. https://doi.org/10.1109/TMI.2020.3008930

    Article  Google Scholar 

  102. Sbalzarini IF (2016) Seeing is believing: quantifying is convincing: computational image analysis in biology. In: De Vos WH et al (eds) Focus on bio-image informatics, vol 219. Springer, Cham, pp 1–39

    Chapter  Google Scholar 

  103. Paul G et al (2013) Coupling image restoration and segmentation: a generalized linear model/bregman perspective. Int J Comput Vis 104(1):69–93. https://doi.org/10.1007/s11263-013-0615-2

    Article  MathSciNet  MATH  Google Scholar 

  104. Sun L et al (2018) Joint CS-MRI reconstruction and segmentation with a unified deep network. http://arxiv.org/abs/1805.02165

  105. Learning Sparsifying Transforms.

  106. Huang Q et al (2019) FR-Net: joint reconstruction and segmentation in compressed sensing cardiac MRI. In: Coudière Y (ed) Functional imaging and modeling of the heart, vol 11504. Springer, New York, pp 352–360

    Chapter  Google Scholar 

  107. Bhadra S et al (2020) Medical image reconstruction with image-adaptive priors learned by use of generative adversarial networks. http://arxiv.org/abs/2001.10830

  108. Gu J et al (2019) Deep generative adversarial networks for thin-section infant MR image reconstruction. IEEE Access 7:68290–68304. https://doi.org/10.1109/ACCESS.2019.2918926

    Article  Google Scholar 

  109. Kuanar S et al (2019) Low dose abdominal CT image reconstruction: an unsupervised learning based approach. In: 2019 IEEE international conference on image processing (ICIP). IEEE, pp 1351–55. https://doi.org/10.1109/ICIP.2019.8803037

  110. Analysis and Evaluation of a Deep Learning Reconstruction Approach with Denoising for Orthopedic MRI

  111. Quan TM et al (2018) Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging 37(6):1488–1497. https://doi.org/10.1109/TMI.2018.2820120

    Article  Google Scholar 

  112. Yang Y et al (2019) A stacked multi-granularity convolution denoising auto-encoder. IEEE Access 7:83888–83899. https://doi.org/10.1109/ACCESS.2019.2918409

    Article  Google Scholar 

  113. Jiang M et al (2021) FA-GAN: fused attentive generative adversarial networks for MRI image super-resolution. Comput Med Imaging Graph 92:101969. https://doi.org/10.1016/j.compmedimag.2021.101969

    Article  Google Scholar 

  114. Pain CD et al (2022) Deep learning-based image reconstruction and post-processing methods in positron emission tomography for low-dose imaging and resolution enhancement. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-022-05746-4

    Article  Google Scholar 

  115. MirGAN: Medical Image Reconstruction using Generative Adversarial Networks.

  116. Wang Y et al (2016) Auto-encoder based dimensionality reduction. Neurocomputing 184:232–242. https://doi.org/10.1016/j.neucom.2015.08.104

    Article  Google Scholar 

  117. Chen M et al (2021) Deep feature learning for medical image analysis with convolutional autoencoder neural network. IEEE Trans Big Data 7(4):750–758. https://doi.org/10.1109/TBDATA.2017.2717439

    Article  Google Scholar 

  118. Wei R, Mahmood A (2021) Recent advances in variational autoencoders with representation learning for biomedical informatics: a survey. IEEE Access 9:4939–4956. https://doi.org/10.1109/ACCESS.2020.3048309

    Article  Google Scholar 

  119. Shin HC et al (2013) Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans Pattern Anal Mach Intell 35(8):1930–1943. https://doi.org/10.1109/TPAMI.2012.277

    Article  Google Scholar 

  120. Saravanan S, Sujitha J (2020) Deep medical image reconstruction with autoencoders using deep boltzmann machine training. EAI Endorsed Trans Pervas Health Technol 6(24):166360. https://doi.org/10.4108/eai.24-9-2020.166360

    Article  Google Scholar 

  121. Chen H et al (2017) Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging 36(12):2524–2535. https://doi.org/10.1109/TMI.2017.2715284

    Article  Google Scholar 

  122. Tezcan KC et al (2019) MR image reconstruction using deep density priors. IEEE Trans Med Imaging 38(7):1633–1642. https://doi.org/10.1109/TMI.2018.2887072

    Article  Google Scholar 

  123. Koonjoo N et al (2021) Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. Sci Rep 11(1):8248. https://doi.org/10.1038/s41598-021-87482-7

    Article  Google Scholar 

  124. Marhon SA et al (2013) Recurrent neural networks. In: Bianchini M (ed) Handbook on neural information processing, vol 49. Springer, Berlin Heidelberg, pp 29–65

    Chapter  Google Scholar 

  125. Salehinejad H et al (2019) Synthesizing chest X-ray pathology for training deep convolutional neural networks. IEEE Trans Med Imaging 38(5):1197–1206. https://doi.org/10.1109/TMI.2018.2881415

    Article  Google Scholar 

  126. Urolagin S et al (2012) Generalization capability of artificial neural network incorporated with pruning method. In: Thilagam PS (ed) Advanced computing, networking and security, vol 7135. Springer, Berlin Heidelberg, pp 171–178

    Chapter  Google Scholar 

  127. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  128. Dey R, Salem FM (2017) Gate-variants of gated recurrent unit (GRU) neural networks. http://arxiv.org/abs/1701.05923

  129. Chakravarty A, Sivaswamy J (2019) RACE-Net: a recurrent neural network for biomedical image segmentation. IEEE J Biomed Health Inf 23(3):1151–1162. https://doi.org/10.1109/JBHI.2018.2852635

    Article  Google Scholar 

  130. Zhang J, Zuo H (2020) A deep RNN for CT image reconstruction. Med Imaging 11312:1136–1144. https://doi.org/10.1117/12.2549809

    Article  Google Scholar 

  131. Qin C et al (2019) Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 38(1):280–290. https://doi.org/10.1109/TMI.2018.2863670

    Article  Google Scholar 

  132. Kim TH et al (2019) LORAKI: autocalibrated recurrent neural networks for autoregressive MRI reconstruction in k-Space. http://arxiv.org/abs/1904.09390

  133. Ikuta M (2021) A deep recurrent neural network with gated momentum unit for CT image reconstruction. https://doi.org/10.36227/techrxiv.15066138.v1

  134. Oh C et al (2021) A K-space-to-image reconstruction network for MRI using recurrent neural network. Med Phys 48(1):193–203. https://doi.org/10.1002/mp.14566

    Article  Google Scholar 

  135. Hosseini SA et al (2019) SRAKI-RNN: accelerated MRI with scan-specific recurrent neural networks using densely connected blocks. In: YM Lu (ed) Wavelets and sparsity XVIII. SPIE, p 46. https://doi.org/10.1117/12.2527949

  136. Wang P et al (2020) Pyramid convolutional RNN for MRI reconstruction. http://arxiv.org/abs/1912.00543

  137. Ma G et al (2019) Learning image from projection: a full-automatic reconstruction (FAR) net for sparse-views computed tomography. http://arxiv.org/abs/1901.03454

  138. Chen L, Wu C (2019) A note on the expressive power of deep rectified linear unit networks in high-dimensional spaces. Math Methods Appl Sci 42(9):3400–3404. https://doi.org/10.1002/mma.5575

    Article  MathSciNet  MATH  Google Scholar 

  139. Low-dose CT image reconstruction using gain intervention-based dictionary learning

  140. Lee M et al (2020) Sparse-view CT reconstruction based on multi-level wavelet convolution neural network. Physica Med 80:352–362. https://doi.org/10.1016/j.ejmp.2020.11.021

    Article  Google Scholar 

  141. Huang Y et al (2020) Field of view extension in computed tomography using deep learning prior. In: Tolxdorff T (ed) Bildverarbeitung für die Medizin. Springer Fachmedien, New York, pp 186–191

    Google Scholar 

  142. Gröhl J et al (2018) Reconstruction of initial pressure from limited view photoacoustic images using deep learning. In: AA Oraevsky, LV Wang (eds) Photons plus ultrasound: imaging and sensing. SPIE, p 98. https://doi.org/10.1117/12.2288353

  143. Hyun CM et al (2018) Deep learning for undersampled MRI reconstruction. Phys Med Biol 63(13):135007. https://doi.org/10.1088/1361-6560/aac71a

    Article  Google Scholar 

  144. Shlezinger N et al (2021) Model-based deep learning. http://arxiv.org/abs/2012.08405

  145. Aggarwal HK et al (2019) MoDL: model based deep learning architecture for inverse problems. IEEE Trans Med Imaging 38(2):394–405. https://doi.org/10.1109/TMI.2018.2865356

    Article  Google Scholar 

  146. Liang K et al (2019) A model-based deep learning reconstruction for X-Ray CT. http://arxiv.org/abs/1910.06940

  147. Biswas S et al (2019) Dynamic MRI using model-based deep learning and SToRM priors: MoDL-SToRM. Magn Reson Med 82(1):485–494. https://doi.org/10.1002/mrm.27706

    Article  Google Scholar 

  148. Lyu Q et al (2021) Cine cardiac MRI motion artifact reduction using a recurrent neural network. IEEE Trans Med Imaging 40(8):2170–2181. https://doi.org/10.1109/TMI.2021.3073381

    Article  Google Scholar 

  149. Gao Y et al (2019) A feasibility study of extracting tissue textures from a previous full-dose CT database as prior knowledge for bayesian reconstruction of current low-dose ct images. IEEE Trans Med Imaging 38(8):1981–1992. https://doi.org/10.1109/TMI.2018.2890788

    Article  Google Scholar 

  150. Szegedy C et al (2015) Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  151. Guo S, Yang Z (2018) Multi-channel-ResNet: an integration framework towards skin lesion analysis. Inf Med Unlocked 12:67–74. https://doi.org/10.1016/j.imu.2018.06.006

    Article  Google Scholar 

  152. Yang W et al (2017) Improving low-dose CT image using residual convolutional network. IEEE Access 5:24698–24705. https://doi.org/10.1109/ACCESS.2017.2766438

    Article  Google Scholar 

  153. Mikolajczyk A, Grochowski M (2018) Data augmentation for improving deep learning in image classification problem. In: 2018 international interdisciplinary PhD workshop (IIPhDW). IEEE, pp 117–22. https://doi.org/10.1109/IIPHDW.2018.8388338

  154. Syben C et al (2018) Deriving neural network architectures using precision learning: parallel-to-fan beam conversion. http://arxiv.org/abs/1807.03057

  155. Deniz O et al (2020) Robustness to adversarial examples can be improved with overfitting. Int J Mach Learn Cybern 11(4):935–944. https://doi.org/10.1007/s13042-020-01097-4

    Article  Google Scholar 

  156. Miller DJ et al (2020) Adversarial learning targeting deep neural network classification: a comprehensive review of defenses against attacks. Proc IEEE 108(3):402–433. https://doi.org/10.1109/JPROC.2020.2970615

    Article  Google Scholar 

  157. Arulkumaran K et al (2017) Deep reinforcement learning: a brief survey. IEEE Signal Process Mag 34(6):26–38. https://doi.org/10.1109/MSP.2017.2743240

    Article  Google Scholar 

  158. Kumar N et al (2021) Novel deep transfer learning model for COVID-19 patient detection using X-ray chest images. J Ambient Intell HumComput. 5:22. https://doi.org/10.1007/s12652-021-03306-6

    Article  Google Scholar 

  159. Tiwari S (2017) A variational framework for low-dose sinogram restoration. Int J Biomed Eng Technol 24(4):356–367. https://doi.org/10.1504/IJBET.2017.085440

    Article  Google Scholar 

  160. Yedder HB et al (2020) Deep learning for biomedical image reconstruction: a survey. https://doi.org/10.48550/ARXIV.2002.12351

  161. Abadi M et al (2016) TensorFlow: large-scale machine learning on heterogeneous distributed systems. http://arxiv.org/abs/1603.04467

  162. Bastien F et al (2012) Theano: new features and speed improvements. http://arxiv.org/abs/1211.5590

  163. Rush AM (2020) Torch-Struct: deep structured prediction library. http://arxiv.org/abs/2002.00876

  164. Paszke A et al (2019) PyTorch: an imperative style, high-performance deep learning library. http://arxiv.org/abs/1912.01703

  165. Ketkar N (2017) Introduction to Keras. In: Ketkar N (ed) Deep learning with python: a hands-on introduction. Springer, Cham, pp 97–111

    Chapter  Google Scholar 

  166. Vedaldi A, Lenc K (2015) MatConvNet: convolutional neural networks for MATLAB. In: Proceedings of the 23rd ACM international conference on multimedia. ACM, pp 689–92. https://doi.org/10.1145/2733373.2807412

  167. Seide F, Agarwal A (2016) CNTK: microsoft’s open-source deep-learning toolkit. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 2135–2135. https://doi.org/10.1145/2939672.2945397

  168. Han Y, Ye JC (2018) Framing U-Net via deep convolutional framelets: application to sparse-view CT. IEEE Trans Med Imaging 37(6):1418–1429. https://doi.org/10.1109/TMI.2018.2823768

    Article  Google Scholar 

  169. Ronneberger O et al (2015) U-Net: convolutional networks for biomedical image segmentation. http://arxiv.org/abs/1505.04597

  170. Gibson E et al (2018) NiftyNet: a deep-learning platform for medical imaging. Comput Methods Prog Biomed 158:113–122. https://doi.org/10.1016/j.cmpb.2018.01.025

    Article  Google Scholar 

  171. Pawlowski N et al (2017) DLTK: state of the art reference implementations for deep learning on medical images. http://arxiv.org/abs/1711.06853

  172. Kamnitsas K et al (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78. https://doi.org/10.1016/j.media.2016.10.004

    Article  Google Scholar 

  173. Kamnitsas K et al (2016) DeepMedic for brain tumor segmentation. In: Crimi A (ed) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer International Publishing, Cham, pp 138–149

    Chapter  Google Scholar 

  174. Shen L et al (2019) Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nat Biomed Eng 3(11):880–888. https://doi.org/10.1038/s41551-019-0466-4

    Article  Google Scholar 

  175. Gadelha M et al (2019) Shape reconstruction using differentiable projections and deep priors. In: 2019 IEEE/CVF international conference on computer vision (ICCV). IEEE, pp 22–30. https://doi.org/10.1109/ICCV.2019.00011

  176. Kulkarni K et al (2016) ReconNet: non-iterative reconstruction of images from compressively sensed measurements. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 449–58. https://doi.org/10.1109/CVPR.2016.55

  177. Kang E et al (2017) Wavelet domain residual network (WavResNet) for low-dose X-ray CT reconstruction. http://arxiv.org/abs/1703.01383

  178. Kang E et al (2018) Deep convolutional framelet denosing for low-dose CT via wavelet residual network. IEEE Trans Med Imaging 37(6):1358–1369. https://doi.org/10.1109/TMI.2018.2823756

    Article  Google Scholar 

  179. Schlemper J et al (2017) A deep cascade of convolutional neural networks for MR image reconstruction. http://arxiv.org/abs/1703.00555

  180. Guo Y et al (2016) Deep learning for visual understanding: a review. Neurocomputing 187:27–48. https://doi.org/10.1016/j.neucom.2015.09.116

    Article  Google Scholar 

  181. Huang C et al (2016) Learning deep representation for imbalanced classification. In: Proceedings of the 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 5375–84. https://doi.org/10.1109/CVPR.2016.580

  182. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. http://arxiv.org/abs/1502.03167

  183. Yu L et al (2017) automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 36(4):994–1004. https://doi.org/10.1109/TMI.2016.2642839

    Article  Google Scholar 

  184. Direct reconstruction of ultrasound elastography using an end-to-end deep neural network. Springerprofessional.De. https://www.springerprofessional.de/en/direct-reconstruction-of-ultrasound-elastography-using-an-end-to/16122350. Accessed 16 Sept 2021

  185. Greffier J et al (2020) Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol 30(7):3951–3959. https://doi.org/10.1007/s00330-020-06724-w

    Article  Google Scholar 

  186. Chen H et al (2017) ALow-dose CT via convolutional neural network. Biomed Opt Express 8(2):679. https://doi.org/10.1364/BOE.8.000679

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Tiwari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gothwal, R., Tiwari, S. & Shivani, S. Computational Medical Image Reconstruction Techniques: A Comprehensive Review. Arch Computat Methods Eng 29, 5635–5662 (2022). https://doi.org/10.1007/s11831-022-09785-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09785-w

Navigation