Skip to main content
Log in

Particle-Based Numerical Modelling of Liquid Marbles: Recent Advances and Future Perspectives

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

A liquid marble is a liquid droplet coated usually with hydrophobic particles that can hold a very small liquid volume without wetting the adjacent surface. This combination gives rise to a set of unique properties such as resistance to contamination, low-friction mobility and flexible manipulation, making them appealing for a myriad of engineering applications including miniature reactors, gas sensing and drug delivery. Despite numerous experimental studies, numerical modelling investigations of liquid marbles are currently underrepresented in the literature, although such investigations can lead to a better understanding of their overall behaviour while overcoming the use of cost- and time-intensive experimental-only procedures. This paper therefore evaluates the capabilities of three well-established and widely-used particle-based numerical frameworks, namely Smoothed Particle Hydrodynamics (SPH)-based approaches, Coarse-Grained (CG)-based approaches and Lattice Boltzmann Method (LBM)-based approaches, to investigate liquid-marble properties and their key applications. Through a comprehensive review of recent advancements, it reveals that these numerical approaches demonstrate promising capabilities of simulating complex multiphysical phenomena involved with liquid-marble systems such as their floatation, coalescence and surface-tension-surface-area relationship. The paper further elaborates on the perspective that benefiting from particle-based numerical and computational techniques, liquid marbles can become an even more effective and exciting platform for many cutting-edge large-scale engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bormashenko E (2011) Liquid marbles: properties and applications. Curr Opin Colloid Interface Sci 16(4):266–271. https://doi.org/10.1016/j.cocis.2010.12.002

    Article  Google Scholar 

  2. Asare-Asher S, Connor JN, Sedev R (2015) Elasticity of liquid marbles. J Colloid Interface Sci 449:341–346

    Article  Google Scholar 

  3. Janardan N, Panchagnula MV, Bormashenko E (2015) Liquid marbles: physics and applications. Sadhana 40(3):653–671

    Article  Google Scholar 

  4. Ooi CH, Vadivelu R, Jin J, Sreejith KR, Singha P, Nguyen N-K, Nguyen N-T (2021) Liquid marble-based digital microfluidics – fundamentals and applications. Lab Chip 21(7):1199–1216. https://doi.org/10.1039/D0LC01290D

    Article  Google Scholar 

  5. Nguyen N-T (2020) Micro Elastofluidics: Elasticity and Flexibility for Efficient Microscale Liquid Handling. Micromachines 11:1. https://doi.org/10.3390/mi11111004

    Article  Google Scholar 

  6. Aussillous P, Quéré D (2001) Liquid marbles. Nature 411(6840):924–927. https://doi.org/10.1038/35082026

    Article  MATH  Google Scholar 

  7. Jing J, Nguyen N-T (2018) Manipulation schemes and applications of liquid marbles for micro total analysis systems. Microelectron Eng 197:87–95

    Article  Google Scholar 

  8. Fujii S, Kameyama S, Armes SP, Dupin D, Suzaki M, Nakamura Y (2010) pH-responsive liquid marbles stabilized with poly (2-vinylpyridine) particles. Soft Matter 6(3):635–640

    Article  Google Scholar 

  9. Zhao Y, Xu Z, Parhizkar M, Fang J, Wang X, Lin T (2012) Magnetic liquid marbles, their manipulation and application in optical probing. Microfluid Nanofluid 13(4):555–564. https://doi.org/10.1007/s10404-012-0976-9

    Article  Google Scholar 

  10. Vadivelu RK, Ooi CH, Yao R-Q et al (2015) Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Sci Rep 5(1):15083. https://doi.org/10.1038/srep15083

    Article  Google Scholar 

  11. Tian J, Arbatan T, Li X, Shen W (2010) Porous liquid marble shell offers possibilities for gas detection and gas reactions. Chem Eng J 15:347–353

    Article  Google Scholar 

  12. Xue Y, Wang H, Zhao Y, Dai L, Feng L, Wang X, Lin T (2010) Magnetic Liquid Marbles: A “Precise” Miniature Reactor. Adv Mater 22:4814–4818

    Article  Google Scholar 

  13. Rong X, Ettelaie R, Lishchuk SV, Cheng H, Zhao N, Xiao F, Cheng F, Yang H (2019) Liquid marble-derived solid-liquid hybrid superparticles for CO2 capture. Nat Commun 10(1):1854. https://doi.org/10.1038/s41467-019-09805-7

    Article  Google Scholar 

  14. Bormashenko E, Musin A (2009) Revealing of water surface pollution with liquid marbles. Appl Surf Sci 255(12):6429–6431

    Article  Google Scholar 

  15. Jin J, Ooi CH, Sreejith KR, Dao DV, Nguyen N-T (2019) Dielectrophoretic trapping of a floating liquid marble. Phys Rev Appl 11(4):044059. https://doi.org/10.1103/PhysRevApplied.11.044059

    Article  Google Scholar 

  16. Sreejith KR, Gorgannezhad L, Jin J et al (2020) Core-shell beads made by composite liquid marble technology as a versatile microreactor for polymerase chain reaction. Micromachines 11(3):1. https://doi.org/10.3390/mi11030242

    Article  Google Scholar 

  17. Roy PK, Binks BP, Fujii S, Shoval S, Bormashenko E (2020) Composite liquid marbles as a macroscopic model system representing shedding of enveloped viruses. J Phys Chem Lett 11(11):4279–4285. https://doi.org/10.1021/acs.jpclett.0c01230

    Article  Google Scholar 

  18. Roy PK, Binks BP, Bormashenko E, Legchenkova I, Fujii S, Shoval S (2020) Manufacture and properties of composite liquid marbles. J Colloid Interface Sci 575:35–41. https://doi.org/10.1016/j.jcis.2020.04.066

    Article  Google Scholar 

  19. Ooi CH, Vadivelu RK, StJohn J, Dao DV, Nguyen N-T (2015) Deformation of a floating liquid marble. Soft Matter 11(23):4576–4583

    Article  Google Scholar 

  20. Singha P, Nguyen N-K, Sreejith KR, An H, Nguyen N-T, Ooi CH (2020) Effect of core liquid surface tension on the liquid marble shell. Adv Mater Interfaces 1:2001591. https://doi.org/10.1002/admi.202001591

    Article  Google Scholar 

  21. McHale G, Newton M (2015) Liquid marbles: topical context within soft matter and recent progress. Soft Matter 11(13):2530–2546

    Article  Google Scholar 

  22. Cengiz U, Erbil HY (2013) The lifetime of floating liquid marbles: the influence of particle size and effective surface tension. Soft Matter 9(37):8980–8991. https://doi.org/10.1039/C3SM51304A

    Article  Google Scholar 

  23. Bormashenko E (2012) New insights into liquid marbles. Soft Matter 8(43):11018–11021. https://doi.org/10.1039/C2SM26189H

    Article  Google Scholar 

  24. Nguyen N-T (2013) Deformation of ferrofluid marbles in the presence of a permanent magnet. Langmuir 29(45):13982–13989. https://doi.org/10.1021/la4032859

    Article  Google Scholar 

  25. Aussillous P, Quéré D (2006) Properties of liquid marbles. Proc R Soc A: Math Phys Eng Sci 462(2067):973–999. https://doi.org/10.1098/rspa.2005.1581

    Article  MATH  Google Scholar 

  26. Bormashenko E, Bormashenko Y, Oleg G (2010) On the nature of the friction between nonstick droplets and solid substrates. Langmuir 26(15):12479–12482

    Article  Google Scholar 

  27. Oliveira NM, Reis RL, Mano JF (2017) The Potential of Liquid Marbles for Biomedical Applications: A Critical Review. Adv Healthcare Mater 6(19):1700192. https://doi.org/10.1002/adhm.201700192

    Article  Google Scholar 

  28. Liu Z, Fu X, Binks BP, Shum HC (2015) Mechanical compression to characterize the robustness of liquid marbles. Langmuir 31(41):11236–11242. https://doi.org/10.1021/acs.langmuir.5b02792

    Article  Google Scholar 

  29. Singha P, Ooi CH, Nguyen N-K, Sreejith KR, Jin J, Nguyen N-T (2020) Capillarity: revisiting the fundamentals of liquid marbles. Microfluid Nanofluid 24(10):81. https://doi.org/10.1007/s10404-020-02385-9

    Article  Google Scholar 

  30. Jin J, Sreejith KR, Ooi CH, Dao DV, Nguyen N-T (2020) Critical trapping conditions for floating liquid marbles. Phys Rev Appl 13(1):014002. https://doi.org/10.1103/PhysRevApplied.13.014002

    Article  Google Scholar 

  31. Jing J, Ooi CH, Dao DV, Nguyen N-T (2017) Coalescence processes of droplets and liquid marbles. Micromachines 8(11):336

    Article  Google Scholar 

  32. Polwaththe-Gallage H-N, Ooi CH, Jin J, Sauret E, Nguyen N-T, Li Z, Gu Y (2019) The stress-strain relationship of liquid marbles under compression. Appl Phys Lett 114(4):043701. https://doi.org/10.1063/1.5079438

    Article  Google Scholar 

  33. Polwaththe-Gallage H-N, Saha SC, Sauret E, Flower R, Gu Y (2016) A coupled SPH-DEM approach to model the interactions between multiple red blood cells in motion in capillaries. Int J Mech Mater Des 12(4):477–494. https://doi.org/10.1007/s10999-015-9328-8

    Article  Google Scholar 

  34. Karunasena H, Senadeera W, Brown RJ, Gu YJSM (2014) A particle based model to simulate microscale morphological changes of plant tissues during drying. Soft Matter 10(29):5249–5268

    Article  Google Scholar 

  35. Rathnayaka CM, Karunasena HCP, Senadeera W, Gu YT (2018) Application of a coupled smoothed particle hydrodynamics (SPH) and coarse-grained (CG) numerical modelling approach to study three-dimensional (3-D) deformations of single cells of different food-plant materials during drying. Soft Matter 14(11):2015–2031. https://doi.org/10.1039/C7SM01465A

    Article  Google Scholar 

  36. Rathnayaka CM, Karunasena HCP, Senadeera W, Gu YT (2020) Modelling 3-D cellular microfluidics of different plant cells for the prediction of cellular deformations under external mechanical compression: A SPH-CG-based computational study. In: Chanson H, Brown R (eds) Proceedings of the 22nd Australasian Fluid Mechanics Conference AFMC2020. The University of Queensland. https://doi.org/10.14264/1374f47

  37. Ye T, Phan-Thien N, Lim CT (2016) Particle-based simulations of red blood cells—A review. J Biomech 49(11):2255–2266. https://doi.org/10.1016/j.jbiomech.2015.11.050

    Article  Google Scholar 

  38. Mahadevan L, Pomeau Y (1999) Rolling droplets. Phys Fluids 11(9):2449–2453. https://doi.org/10.1063/1.870107

    Article  MathSciNet  MATH  Google Scholar 

  39. Wong CYH, Adda-Bedia M, Vella D (2017) Non-wetting drops at liquid interfaces: from liquid marbles to Leidenfrost drops. Soft Matter 13:5250–5260

    Article  Google Scholar 

  40. Polwaththe-Gallage H-N, Sauret E, Nguyen N-T, Saha SC, Gu Y (2018) A novel numerical model to predict the morphological behavior of magnetic liquid marbles using coarse grained molecular dynamics concepts. Phys Fluids 30(1):017105. https://doi.org/10.1063/1.5000289

    Article  Google Scholar 

  41. O’Connor J, Day P, Mandal P, Revell A (2016) Computational fluid dynamics in the microcirculation and microfluidics: what role can the lattice Boltzmann method play? Integr Biol 8(5):589–602

    Article  Google Scholar 

  42. Erickson D (2005) Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices. Microfluid Nanofluid 1(4):301–318

    Article  Google Scholar 

  43. Liu Y, Liu WK (2006) Rheology of red blood cell aggregation by computer simulation. J Comput Phys 220(1):139–154

    Article  MathSciNet  MATH  Google Scholar 

  44. Tsubota KI, Wada S, Kamada H, Kitagawa Y, Lima R, Yamaguchi T (2006) A particle method for blood flow simulation: application to flowing red blood cells and platelets. J Earth Simul 5:2–7

    Google Scholar 

  45. Schaller V, Wahnström G, Sanz-Velasco A, Enoksson P, Johansson C (2009) Monte Carlo simulation of magnetic multi-core nanoparticles. J Magn Magn Mater 321(10):1400–1403

    Article  Google Scholar 

  46. Wang Z, Holm C, Müller HW (2002) Molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids. Phys Rev E 66:1–13

    Google Scholar 

  47. Vogiatzis GG, Theodorou DN (2018) Multiscale Molecular Simulations of Polymer-Matrix Nanocomposites. Arch Comput Methods Eng 25(3):591–645. https://doi.org/10.1007/s11831-016-9207-y

    Article  MathSciNet  MATH  Google Scholar 

  48. Perilla J, Schulten K (2017) Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat Commun 8:15959–15959

    Article  Google Scholar 

  49. Liu M, Liu G (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu G-R, Liu M (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific

  51. Liu WK, Chen Y, Jun S, Chen JS, Belytschko T, Pan C, Uras RA, Chang CT (1996) Overview and applications of the reproducing Kernel Particle methods. Arch Comput Methods Eng 3(1):3–80. https://doi.org/10.1007/BF02736130

    Article  MathSciNet  Google Scholar 

  52. Frank X, Perré P (2010) The potential of meshless methods to address physical and mechanical phenomena involved during drying at the pore level. Drying Technol 28(8):932–943. https://doi.org/10.1080/07373937.2010.497077

    Article  Google Scholar 

  53. Perré P (2011) A review of modern computational and experimental tools relevant to the field of drying. Drying Technol 29(13):1529–1541

    Article  Google Scholar 

  54. Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226. https://doi.org/10.1006/jcph.1997.5776

    Article  MATH  Google Scholar 

  55. Van Liedekerke P, Ghysels P, Tijskens E, Samaey G, Roose D, Ramon H (2011) Mechanisms of soft cellular tissue bruising: a particle based simulation approach. Soft Matter 7(7):3580–3591

    Article  Google Scholar 

  56. Wijerathne WDCC, Rathnayaka CM, Karunasena HCP, Senadeera W, Sauret E, Turner IW, Gu YT (2019) A coarse-grained multiscale model to simulate morphological changes of food-plant tissues undergoing drying. Soft Matter 15(5):901–916. https://doi.org/10.1039/C8SM01593G

    Article  Google Scholar 

  57. Rafiee A, Manzari MT, Hosseini M (2007) An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows. Int J Non-Linear Mech 42(10):1210–1223. https://doi.org/10.1016/j.ijnonlinmec.2007.09.006

    Article  MATH  Google Scholar 

  58. Hérault A, Bilotta G, Vicari A, Rustico E, Del Negro C (2011) Numerical simulation of lava flow using a GPU SPH model. Ann Geophys 54(5):1. https://doi.org/10.4401/ag-5343

    Article  Google Scholar 

  59. Liu MB, Liu GR, Zhou LW, Chang JZ (2015) Dissipative particle dynamics (DPD): an overview and recent developments. Arch Comput Methods Eng 22(4):529–556. https://doi.org/10.1007/s11831-014-9124-x

    Article  MathSciNet  MATH  Google Scholar 

  60. Van Liedekerke P, Ghysels P, Tijskens E, Samaey G, Smeedts B, Roose D, Ramon H (2010) A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates. Phys Biol 7(2):026006

    Article  Google Scholar 

  61. Van Liedekerke P, Tijskens E, Ramon H, Ghysels P, Samaey G, Roose D (2010) Particle-based model to simulate the micromechanics of biological cells. Phys Rev E 81(6):061906

    Article  Google Scholar 

  62. Rathnayaka CM, Karunasena HCP, Gu YT, Guan L, Senadeera W (2017) Novel trends in numerical modelling of plant food tissues and their morphological changes during drying—a review. J Food Eng 194:24–39. https://doi.org/10.1016/j.jfoodeng.2016.09.002

    Article  Google Scholar 

  63. Karunasena HCP, Senadeera W, Brown RJ, Gu YT (2014) Simulation of plant cell shrinkage during drying – A SPH–DEM approach. Eng Anal Boundary Elem 44:1–18. https://doi.org/10.1016/j.enganabound.2014.04.004

    Article  MATH  Google Scholar 

  64. Rathnayaka CM, Karunasena HCP, Senadeera W, Polwaththe-Gallage HN, Gu YT (2019) A 3-D coupled Smoothed Particle Hydrodynamics and Coarse-Grained model to simulate drying mechanisms of small cell aggregates. Appl Math Model 67:219–233. https://doi.org/10.1016/j.apm.2018.09.037

    Article  MathSciNet  MATH  Google Scholar 

  65. Rathnayaka CM, Karunasena HCP, Wijerathne W, Senadeera W, Gu YT (2020) A three-dimensional (3-D) meshfree-based computational model to investigate stress-strain-time relationships of plant cells during drying. PLoS ONE 15(7):e0235712. https://doi.org/10.1371/journal.pone.0235712

    Article  Google Scholar 

  66. Rathnayaka CM, Karunasena HCP, Gu YT, Guan L, Banks J, Senadeera W (2016) A 3-D meshfree numerical model to analyze cellular scale shrinkage of different categories of fruits and vegetables during drying. In: Liu GR, Li S (eds) The 7th International Conference on Computational Methods. Scientech Publisher, Berkeley, CA, USA, pp 1070–1080

    Google Scholar 

  67. Polwaththe-Gallage H-N, Saha SC, Sauret E, Flower R, Gu Y (2015) Numerical Investigation of Motion and Deformation of a Single Red Blood Cell in a Stenosed Capillary. Int J Comput Methods 12(04):1540003

    Article  MathSciNet  MATH  Google Scholar 

  68. Wu T, Feng JJ (2013) Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage. Biomicrofluidics 7(4):044115. https://doi.org/10.1063/1.4817959

    Article  MathSciNet  Google Scholar 

  69. Polwaththe-Gallage H-N, Saha SC, Sauret E, Flower R, Senadeera W, Gu Y (2016) SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries. Biomed Eng Online 15(2):161. https://doi.org/10.1186/s12938-016-0256-0

    Article  Google Scholar 

  70. Crespo AC, Dominguez JM, Barreiro A, Gómez-Gesteira M, Rogers BD (2011) GPUs, a New Tool of Acceleration in CFD: Efficiency and Reliability on Smoothed Particle Hydrodynamics Methods. PLoS ONE 6(6):e20685. https://doi.org/10.1371/journal.pone.0020685

    Article  Google Scholar 

  71. Hérault A, Bilotta G, Dalrymple RA (2010) SPH on GPU with CUDA. J Hydraul Res 48(sup1):74–79. https://doi.org/10.1080/00221686.2010.9641247

    Article  Google Scholar 

  72. Winkler D, Rezavand M, Rauch W (2018) Neighbour lists for smoothed particle hydrodynamics on GPUs. Comput Phys Commun 225:140–148. https://doi.org/10.1016/j.cpc.2017.12.014

    Article  Google Scholar 

  73. Jin J, Nguyen N-T (2018) Manipulation schemes and applications of liquid marbles for micro total analysis systems. Microelectron Eng 197:87–95. https://doi.org/10.1016/j.mee.2018.06.003

    Article  Google Scholar 

  74. Li H, Lykotrafitis G (2012) Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane. Biophys J 102(1):75–84. https://doi.org/10.1016/j.bpj.2011.11.4012

    Article  Google Scholar 

  75. Jiang L-G, Wu H-A, Zhou X-Z, Wang X-X (2010) Coarse-grained molecular dynamics simulation of a red blood cell. Chin Phys Lett 27(2):1. https://doi.org/10.1088/0256-307x/27/2/028704

    Article  Google Scholar 

  76. Lyu J, Chen PG, Boedec G, Leonetti M, Jaeger M (2018) Hybrid continuum–coarse-grained modeling of erythrocytes. Comptes Rendus Mécanique 346(6):439–448. https://doi.org/10.1016/j.crme.2018.04.015

    Article  Google Scholar 

  77. Pivkin IV, Karniadakis GE (2008) Accurate coarse-grained modeling of red blood cells. Phys Rev Lett 101(11):1. https://doi.org/10.1103/PhysRevLett.101.118105

    Article  Google Scholar 

  78. Fedosov DA, Caswell B, Karniadakis GE (2009) Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, MN, USA IEEE.

  79. Hale JP, Marcelli G, Parker KH, Winlove CP, Petrov PG (2009) Red blood cell thermal fluctuations: comparison between experiment and molecular dynamics simulations. Soft Matter 5(19):3603–3606. https://doi.org/10.1039/b910422d

    Article  Google Scholar 

  80. Li H, Lykotrafitis G (2014) Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. Biophys J 107(3):642–653. https://doi.org/10.1016/j.bpj.2014.06.031

    Article  Google Scholar 

  81. Li X, Peng Z, Lei H, Dao M, Karniadakis GE (2014) Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model. Philos Trans R Soc A: Math Phys Eng Sci 372:1

    MathSciNet  MATH  Google Scholar 

  82. Kim D-H, Li B, Si F, Phillip JM, Wirtz D, Sun SX (2015) Volume regulation and shape bifurcation in the cell nucleus. J Cell Sci 128(18):3375–3385

    Google Scholar 

  83. Lykov K, Li X, Lei H, Pivkin IV, Karniadakis GE (2015) Inflow/outflow boundary conditions for particle-based blood flow simulations: application to arterial bifurcations and trees. PLoS Comput Biol 11(8):1. https://doi.org/10.1371/journal.pcbi.1004410

    Article  Google Scholar 

  84. Chang H-Y, Li X, Li H, Karniadakis GE (2016) MD/DPD multiscale framework for predicting morphology and stresses of red blood cells in health and disease. PLoS Comput Biol 12(10):1. https://doi.org/10.1371/journal.pcbi.1005173

    Article  Google Scholar 

  85. Barns S, Balanant MA, Sauret E, Flower R, Saha S, Gu Y (2017) Investigation of red blood cell mechanical properties using AFM indentation and coarse-grained particle method. Biomed Eng Online 16(1):1. https://doi.org/10.1186/s12938-017-0429-5

    Article  Google Scholar 

  86. Tang Y-H, Lu L, Li H, Evangelinos C, Grinberg L, Sachdeva V, Karniadakis GE (2017) OpenRBC: a fast simulator of red blood cells at protein resolution. Biophys J 112(10):2030–2037. https://doi.org/10.1016/j.bpj.2017.04.020

    Article  Google Scholar 

  87. Li H, Lu L, Li X, Buffet PA, Dao M, Karniadakis GE, Suresh S (2018) Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders. Proc Natl Acad Sci USA 115(38):9574–9579. https://doi.org/10.1073/pnas.1806501115

    Article  Google Scholar 

  88. Geekiyanage NM, Balanant MA, Sauret E, Saha S, Flower R, Lim CT, Gu Y (2019) A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies. PLoS ONE 14(4):1. https://doi.org/10.1371/journal.pone.0215447

    Article  Google Scholar 

  89. Geekiyanage NM, Sauret E, Saha SC, Flower RL, Gu YT (2020) Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching. Biomech Model Mechanobiol 19(5):1827–1843. https://doi.org/10.1007/s10237-020-01311-w

    Article  Google Scholar 

  90. Geekiyanage N, Sauret E, Saha S, Flower R, Gu Y (2020) Modelling of red blood cell morphological and deformability changes during in-vitro storage. Appl Sci 10(9):1. https://doi.org/10.3390/app10093209

    Article  Google Scholar 

  91. Mukhopadhyay R, Lim G, Wortis M (2002) Echinocyte shapes: Bending, stretching, and shear determine spicule shape and spacing. Biophys J 82(4):1756–1772

    Article  Google Scholar 

  92. Marcelli G, Parker KH, Winlove CP (2005) Thermal fluctuations of red blood cell membrane via a constant-area particle-dynamics model. Biophys J 89(4):2473–2480. https://doi.org/10.1529/biophysj.104.056168

    Article  Google Scholar 

  93. Li X, Li H, Chang H-Y, Lykotrafitis G, Karniadakis GE (2017) Computational biomechanics of human red blood cells in hematological disorders. J Biomech Eng 139(2):1. https://doi.org/10.1115/1.4035120

    Article  Google Scholar 

  94. Fedosov DA, Caswell B, Karniadakis GE (2010) Systematic coarse-graining of spectrin-level red blood cell models. Comput Methods Appl Mech Eng 199(29–32):1937–1948. https://doi.org/10.1016/j.cma.2010.02.001

    Article  MathSciNet  MATH  Google Scholar 

  95. Succi S (2015) Lattice Boltzmann 2038. EPL (Europhysics Letters) 109(5):50001. https://doi.org/10.1209/0295-5075/109/50001

    Article  Google Scholar 

  96. Shan X, Yuan X-F, Chen H (2006) Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation. J Fluid Mech 550:413–441. https://doi.org/10.1017/S0022112005008153

    Article  MathSciNet  MATH  Google Scholar 

  97. Zhang J (2011) Lattice Boltzmann method for microfluidics: models and applications. Microfluid Nanofluid 10:1–28

    Article  Google Scholar 

  98. Obrecht C, Kuznik F, Tourancheau B, Roux J-J (2013) Multi-GPU implementation of the lattice Boltzmann method. Comput Math Appl 65(2):252–261

    Article  MathSciNet  MATH  Google Scholar 

  99. Bernaschi M, Melchionna S, Succi S (2019) Mesoscopic simulations at the physics-chemistry-biology interface. Rev Mod Phys 91(2):025004. https://doi.org/10.1103/RevModPhys.91.025004

    Article  MathSciNet  Google Scholar 

  100. Meng J, Zhang Y, Shan X (2011) Multiscale lattice Boltzmann approach to modeling gas flows. Phys Rev E 83(4):6701

    Article  Google Scholar 

  101. Chacon L, Chen G, Knoll DA, Newman C, Park H, Taitano W, Willert JA, Womeldorff G (2017) Multiscale high-order/low-order (HOLO) algorithms and applications. J Comput Phys 330:21–45

    Article  MathSciNet  MATH  Google Scholar 

  102. Wang M, Chen S (2015) Multiscale simulations. Encycl Microfluid Nanofluid 1:2326–2334

    Article  Google Scholar 

  103. Liu X, Zhu Y-F, Gong B, Yu J-P, Cui S-T (2015) From molecular dynamics to lattice Boltzmann: a new approach for pore-scale modeling of multi-phase flow. Pet Sci 12(2):282–292

    Article  Google Scholar 

  104. Krüger, T., H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E.M.J.S.I.P. Viggen, The lattice Boltzmann method. Vol. 10. 2017. 4–15.

  105. Succi S, Succi S (2018) The lattice Boltzmann equation: for complex states of flowing matter. Oxford University Press

  106. Van den Akker HEA (2018) Lattice Boltzmann simulations for multi-scale chemical engineering. Curr Opin Chem Eng 21:67–75. https://doi.org/10.1016/j.coche.2018.03.003

    Article  Google Scholar 

  107. Zhang J, Li B, Kwok DY (2004) Mean-field free-energy approach to the lattice Boltzmann method for liquid-vapor and solid-fluid interfaces. Phys Rev E 69(3):032602. https://doi.org/10.1103/PhysRevE.69.032602

    Article  Google Scholar 

  108. Gunstensen AK, Rothman DH, Zaleski S, Zanetti G (1991) Lattice Boltzmann model of immiscible fluids. Phys Rev A 43(8):4320–4327. https://doi.org/10.1103/PhysRevA.43.4320

    Article  Google Scholar 

  109. Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47(3):1815–1819. https://doi.org/10.1103/PhysRevE.47.1815

    Article  MathSciNet  Google Scholar 

  110. Li Q, Luo KH, Kang QJ, He YL, Chen Q, Liu Q (2016) Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog Energy Combust Sci 52:62–105. https://doi.org/10.1016/j.pecs.2015.10.001

    Article  Google Scholar 

  111. From CS, Sauret E, Galindo-Torres SA, Gu YT (2019) Interaction pressure tensor on high-order lattice Boltzmann models for nonideal fluids. Phys Rev E 99(6):063318. https://doi.org/10.1103/PhysRevE.99.063318

    Article  Google Scholar 

  112. From CS, Sauret E, Galindo-Torres SA, Gu YT (2020) Application of high-order lattice Boltzmann pseudopotential models. Phys Rev E 101(3):033303. https://doi.org/10.1103/PhysRevE.101.033303

    Article  Google Scholar 

  113. Falcucci G, Bella G, Chiatti G, Chibbaro S, Sbragaglia M, Succi S (2007) Lattice Boltzmann models with mid-range interactions. Commun Comput Phys 2(6):1071–1084

    Google Scholar 

  114. Lulli M, Benzi R, Sbragaglia M (2018) Metastability at the Yield-Stress Transition in Soft Glasses. Phys Rev X 8(2):021031. https://doi.org/10.1103/PhysRevX.8.021031

    Article  Google Scholar 

  115. Dollet B, Scagliarini A, Sbragaglia M (2015) Two-dimensional plastic flow of foams and emulsions in a channel: experiments and lattice Boltzmann simulations. J Fluid Mech 766:556–589. https://doi.org/10.1017/jfm.2015.28

    Article  Google Scholar 

  116. Liu X, Cheng P, Quan X (2014) Lattice Boltzmann simulations for self-propelled jumping of droplets after coalescence on a superhydrophobic surface. Int J Heat Mass Transf 73:195–200. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.060

    Article  Google Scholar 

  117. Peng B, Wang S, Lan Z, Xu W, Wen R, Ma X (2013) Analysis of droplet jumping phenomenon with lattice Boltzmann simulation of droplet coalescence. Appl Phys Lett 102(15):151601. https://doi.org/10.1063/1.4799650

    Article  Google Scholar 

  118. Benzi R, Biferale L, Sbragaglia M, Succi S, Toschi F (2006) Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle. Phys Rev E 74(2):021509. https://doi.org/10.1103/PhysRevE.74.021509

    Article  MathSciNet  MATH  Google Scholar 

  119. Hyväluoma J, Harting J (2008) Slip Flow Over Structured Surfaces with Entrapped Microbubbles. Phys Rev Lett 100(24):246001. https://doi.org/10.1103/PhysRevLett.100.246001

    Article  Google Scholar 

  120. Hyväluoma J, Koponen A, Raiskinmäki P, Timonen J (2007) Droplets on inclined rough surfaces. Eur Phys J E 23(3):289–293. https://doi.org/10.1140/epje/i2007-10190-7

    Article  Google Scholar 

  121. Varagnolo S, Ferraro D, Fantinel P, Pierno M, Mistura G, Amati G, Biferale L, Sbragaglia M (2013) Stick-Slip Sliding of Water Drops on Chemically Heterogeneous Surfaces. Phys Rev Lett 111(6):066101. https://doi.org/10.1103/PhysRevLett.111.066101

    Article  Google Scholar 

  122. Varagnolo S, Schiocchet V, Ferraro D, Pierno M, Mistura G, Sbragaglia M, Gupta A, Amati G (2014) Tuning Drop Motion by Chemical Patterning of Surfaces. Langmuir 30(9):2401–2409. https://doi.org/10.1021/la404502g

    Article  Google Scholar 

  123. Falcucci G, Jannelli E, Ubertini S, Succi S (2013) Direct numerical evidence of stress-induced cavitation. J Fluid Mech 728:362–375. https://doi.org/10.1017/jfm.2013.271

    Article  MATH  Google Scholar 

  124. Sadullah MS, Launay G, Parle J, Ledesma-Aguilar R, Gizaw Y, McHale G, Wells GG, Kusumaatmaja H (2020) Bidirectional motion of droplets on gradient liquid infused surfaces. Commun Phys 3(1):166. https://doi.org/10.1038/s42005-020-00429-8

    Article  Google Scholar 

  125. Panter JR, Gizaw Y, Kusumaatmaja H (2019) Multifaceted design optimization for superomniphobic surfaces. Sci Adv 5(6): eaav7328. https://doi.org/10.1126/sciadv.aav7328

  126. De Haan M, Zavodszky G, Azizi V, Hoekstra AG (2018) Numerical Investigation of the Effects of Red Blood Cell Cytoplasmic Viscosity Contrasts on Single Cell and Bulk Transport Behaviour 8(9):1616

    Google Scholar 

  127. Závodszky G, van Rooij B, Czaja B, Azizi V, de Kanter D, Hoekstra AG (2019) Red blood cell and platelet diffusivity and margination in the presence of cross-stream gradients in blood flows. Phys Fluids 31(3):031903. https://doi.org/10.1063/1.5085881

    Article  Google Scholar 

  128. Karunasena HCP, Gu YT, Brown RJ, Senadeera W (2015) Numerical investigation of plant tissue porosity and its influence on cellular level shrinkage during drying. Biosys Eng 132:71–87. https://doi.org/10.1016/j.biosystemseng.2015.02.002

    Article  Google Scholar 

  129. Rathnayaka CM, Karunasena HCP, Senadeera W, Guan L, Gu YT (2018) Three-Dimensional (3D) Numerical Modeling of Morphogenesis in Dehydrated Fruits and Vegetables. In: Chen G (ed) Advances in Agricultural Machinery and Technologies. CRC Press, Boca Raton, pp 431–454

    Chapter  Google Scholar 

  130. Sauret E, Galindo Torres S, Kuruneru S, Zhang P, Saha S, Gu Y (2017) Comparison between FVM-DEM & LBM-DEMof particle-laden flows in idealised porous metal foam heat exchangers. In: 18th IAHR Conference on Wet Cooling Towers and Air Cooled Heat Exchangers, 16–20 October 2017, Lyon, France

  131. Galindo-Torres SA, Scheuermann A, Li L, Pedroso DM, Williams DJ (2013) A Lattice Boltzmann model for studying transient effects during imbibition–drainage cycles in unsaturated soils. Comput Phys Commun 184(4):1086–1093. https://doi.org/10.1016/j.cpc.2012.11.015

    Article  MathSciNet  Google Scholar 

  132. Ohno S, Tsuda Y, Nakai K, Fujii S, Nakamura Y, Yusa S-I (2016) pH-responsive Liquid Marbles Prepared Using Fluorinated Fatty Acid. Chem Lett 45(5):547–549. https://doi.org/10.1246/cl.160056

    Article  Google Scholar 

  133. Tartakovsky A, Meakin P (2005) Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72(2):026301. https://doi.org/10.1103/PhysRevE.72.026301

    Article  Google Scholar 

  134. Tartakovsky AM, Meakin P, Ward AL (2009) Smoothed particle hydrodynamics model of non-aqueous phase liquid flow and dissolution. Transp Porous Media 76(1):11–34

    Article  Google Scholar 

  135. Mohammadi M, Shahhosseini S, Bayat M (2012) Direct numerical simulation of water droplet coalescence in the oil. Int J Heat Fluid Flow 36:58–71. https://doi.org/10.1016/j.ijheatfluidflow.2012.04.001

    Article  Google Scholar 

  136. Zang D, Chen Z, Zhang Y, Lin K, Geng X, Binks BP (2013) Effect of particle hydrophobicity on the properties of liquid water marbles. Soft Matter 9(20):5067–5073. https://doi.org/10.1039/C3SM50421B

    Article  Google Scholar 

  137. Bhosale PS, Panchagnula MV, Stretz HA (2008) Mechanically robust nanoparticle stabilized transparent liquid marbles. Appl Phys Lett 93(3):034109. https://doi.org/10.1063/1.2959853

    Article  Google Scholar 

  138. Rendos A, Alsharif N, Kim BL, Brown KA (2017) Elasticity and failure of liquid marbles: influence of particle coating and marble volume. Soft Matter 13(47):8903–8909. https://doi.org/10.1039/C7SM01676J

    Article  Google Scholar 

  139. Nguyen TH, Shen W, Hapgood K (2010) Effect of formulation hydrophobicity on drug distribution in wet granulation. Chem Eng J 164(2):330–339. https://doi.org/10.1016/j.cej.2010.05.008

    Article  Google Scholar 

  140. Bormashenko E, Pogreb R, Whyman G, Musin A, Bormashenko Y, Barkay Z (2009) Shape, Vibrations, and Effective Surface Tension of Water Marbles. Langmuir 25(4):1893–1896. https://doi.org/10.1021/la8028484

    Article  Google Scholar 

  141. Karunasena HCP, Brown RJ, Gu YT, Senadeera W (2015) Application of meshfree methods to numerically simulate microscale deformations of different plant food materials during drying. J Food Eng 146:209–226. https://doi.org/10.1016/j.jfoodeng.2014.09.011

    Article  Google Scholar 

Download references

Acknowledgements

The authors kindly acknowledge the support from Dr H.-N. Polwaththe-Gallage for this review and perspective paper.

Funding

The support from the ARC Discovery Project DP180103009 (YG) and Future Fellowship FT200100446 (ES) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

ES and CMR had the idea of the article. CMR, ES, CSF and NMG performed the literature search, data analysis and drafting. ES, NTN and YG iteratively critically reviewed the work and CMR, ES, CSF and NMG performed the subsequent revisions.

Corresponding authors

Correspondence to C. M. Rathnayaka or E. Sauret.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathnayaka, C.M., From, C.S., Geekiyanage, N.M. et al. Particle-Based Numerical Modelling of Liquid Marbles: Recent Advances and Future Perspectives. Arch Computat Methods Eng 29, 3021–3039 (2022). https://doi.org/10.1007/s11831-021-09683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09683-7

Navigation