Skip to main content
Log in

Capillarity: revisiting the fundamentals of liquid marbles

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Liquid marble, an emerging platform for digital microfluidics, has shown its potential in biomedical applications, cosmetics, and chemical industries. Recently, the manipulation and fundamental aspects of liquid marbles have been reported and attracted attention from the microfluidics community. Insights into their physical and chemical properties allow liquid marbles to be utilised in practical applications. This review summarises and revisits the effect of capillarity on the formation of liquid marbles and how it affects the effective surface tension as well as their robustness. The paper also systematically discusses the applied aspect of capillarity of the carrier liquid for transporting floating liquid marbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arbatan T, Li L, Tian J, Shen W (2012) Liquid marbles as micro-bioreactors for rapid blood typing. Adv Healthc Mater 1(1):80–83

    Google Scholar 

  • Arbatan T, Shen W (2011) Measurement of the surface tension of liquid marbles. Langmuir 27(21):12923–12929. https://doi.org/10.1021/la2014682

    Article  Google Scholar 

  • Asare-Asher S, Connor JN, Sedev R (2015) Elasticity of liquid marbles. J Colloid Interface Sci 449:341–346

    Google Scholar 

  • Aussillous P, Quéré D (2001) Liquid marbles. Nature 411(6840):924–927

    MATH  Google Scholar 

  • Aussillous P, Quéré D (2004) Shapes of rolling liquid drops. J Fluid Mech 512:133–151

    MATH  Google Scholar 

  • Aussillous P, Quéré D (2006) Properties of liquid marbles. Proc R Soc A Math Phys Eng Sci 462(2067):973–999

    MATH  Google Scholar 

  • Bhosale PS, Panchagnula MV, Stretz HA (2008) Mechanically robust nanoparticle stabilized transparent liquid marbles. Appl Phys Lett 93(3):034109

    Google Scholar 

  • Binks BP, Johnson AJ, Rodrigues JA (2010) Inversion of ‘dry water’ to aqueous foam on addition of surfactant. Soft Matter 6(1):126–135

    Google Scholar 

  • Bormashenko E (2011) Liquid marbles: properties and applications. Curr Opin Colloid Interface Sci 16(4):266–271

    Google Scholar 

  • Bormashenko E (2012) New insights into liquid marbles. Soft Matter 8(43):11018–11021

    Google Scholar 

  • Bormashenko E (2017) Liquid marbles, elastic nonstick droplets: from minireactors to self-propulsion. Langmuir 33(3):663–669

    Google Scholar 

  • Bormashenko E, Balter R, Aurbach D (2010a) Micropump based on liquid marbles. Appl Phys Lett 97(9):091908

    Google Scholar 

  • Bormashenko E, Pogreb R, Musin A, Balter R, Whyman G, Aurbach D (2010b) Interfacial and conductive properties of liquid marbles coated with carbon black. Powder Technol 203(3):529–533

    Google Scholar 

  • Bormashenko E, Balter R, Aurbach D (2011a) Use of liquid marbles as micro-reactors. Int J Chem React Eng 9(1):1–6

    Google Scholar 

  • Bormashenko E, Bormashenko Y, Pogreb R, Gendelman O (2011b) Janus droplets: liquid marbles coated with dielectric/semiconductor particles. Langmuir 27(1):7–10

    Google Scholar 

  • Bormashenko E, Bormashenko Y, Musin A (2009a) Water rolling and floating upon water: marbles supported by a water/marble interface. J Colloid Interface Sci 333(1):419–421

    Google Scholar 

  • Bormashenko E, Bormashenko Y, Musin A, Barkay Z (2009b) On the mechanism of floating and sliding of liquid marbles. ChemPhysChem 10(4):654–656

    Google Scholar 

  • Bormashenko E, Pogreb R, Whyman G, Musin A (2009c) Surface tension of liquid marbles. Colloids Surf A 351(1–3):78–82

    Google Scholar 

  • Bormashenko E, Pogreb R, Whyman G, Musin A, Bormashenko Y, Barkay Z (2009d) Shape, vibrations, and effective surface tension of water marbles. Langmuir 25(4):1893–1896

    Google Scholar 

  • Bormashenko E, Musin A, Whyman G, Barkay Z, Starostin A, Valtsifer V, Strelnikov V (2013) Revisiting the surface tension of liquid marbles: measurement of the effective surface tension of liquid marbles with the pendant marble method. Colloids Surf A 425:15–23

    Google Scholar 

  • Bormashenko E, Bormashenko Y, Grynyov R, Aharoni H, Whyman G, Binks BP (2015a) Self-propulsion of liquid marbles: Leidenfrost-like levitation driven by Marangoni flow. J Phys Chem C 119(18):9910–9915. https://doi.org/10.1021/acs.jpcc.5b01307

    Article  Google Scholar 

  • Bormashenko E, Pogreb R, Balter R, Aharoni H, Bormashenko Y, Grynyov R, Mashkevych L, Aurbach D, Gendelman O (2015b) Elastic properties of liquid marbles. Colloid Polym Sci 293(8):2157–2164

    Google Scholar 

  • Bormashenko E, Frenkel M, Bormashenko Y, Chaniel G, Valtsifer V, Binks BP (2017) Superposition of translational and rotational motions under self-propulsion of liquid marbles filled with aqueous solutions of camphor. Langmuir 33(46):13234–13241

    Google Scholar 

  • Bormashenko E, Musin A (2009) Revealing of water surface pollution with liquid marbles. Appl Surf Sci 255(12):6429–6431

    Google Scholar 

  • Bormashenko E, Pogreb R, Musin A (2012) Stable water and glycerol marbles immersed in organic liquids: from liquid marbles to Pickering-like emulsions. J Colloid Interface Sci 366(1):196–199

    Google Scholar 

  • Bormashenko E, Pogreb R, Whyman G, Erlich M (2007) Cassie–Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie–Wenzel wetting transition a 2d or 1d affair? Langmuir 23(12):6501–6503

    Google Scholar 

  • Cai R, Yang H, He J, Zhu W (2009) The effects of magnetic fields on water molecular hydrogen bonds. J Mol Struct 938(1–3):15–19

    Google Scholar 

  • Celestini F, Kofman R (2006) Vibration of submillimeter-size supported droplets. Phys Rev E 73(4):041602

    Google Scholar 

  • Cengiz U, Erbil HY (2013) The lifetime of floating liquid marbles: the influence of particle size and effective surface tension. Soft Matter 9(37):8980–8991

    Google Scholar 

  • Chang C-H, Franses E (1994) An analysis of the factors affecting dynamic tension measurements with the pulsating bubble surfactometer. J Colloid Interface Sci 164(1):107–113

    Google Scholar 

  • Chen G, Tan P, Chen S, Huang J, Wen W, Xu L (2013) Coalescence of pickering emulsion droplets induced by an electric field. Phys Rev Lett 110(6):064502

    Google Scholar 

  • Chen JZ, Troian SM, Darhuber AA, Wagner S (2005) Effect of contact angle hysteresis on thermocapillary droplet actuation. J Appl Phys 97(1):014906

    Google Scholar 

  • Chen R, Xiong Q, Song RZ, Li KL, Zhang YX, Fang C, Guo JL (2019) Magnetically controllable liquid metal marbles. Adv Mater Interfaces 6(20):1901057

    Google Scholar 

  • Chen Z, Zang D, Zhao L, Qu M, Li X, Li X, Li L, Geng X (2017) Liquid marble coalescence and triggered microreaction driven by acoustic levitation. Langmuir 33(25):6232–6239. https://doi.org/10.1021/acs.langmuir.7b00347

    Article  Google Scholar 

  • Chevallier E, Mamane A, Stone HA, Tribet C, Lequeux F, Monteux C (2011) Pumping-out photo-surfactants from an air–water interface using light. Soft Matter 7(17):7866–7874

    Google Scholar 

  • Choi K, Ng AH, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem 5:413–440

    Google Scholar 

  • Dandan M, Erbil HY (2009) Evaporation rate of graphite liquid marbles: comparison with water droplets. Langmuir 25(14):8362–8367

    Google Scholar 

  • Daniel S, Chaudhury MK (2002) Rectified motion of liquid drops on gradient surfaces induced by vibration. Langmuir 18(9):3404–3407

    Google Scholar 

  • De Gennes P-G, Brochard-Wyart F, Quéré D (2013) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer Science & Business Media, New York

    MATH  Google Scholar 

  • Della Volpe C, Maniglio D, Morra M, Siboni S (2002) The determination of a ‘stable-equilibrium’contact angle on heterogeneous and rough surfaces. Colloids Surf A 206(1–3):47–67

    Google Scholar 

  • Diguet A, Mani NK, Geoffroy M, Sollogoub M, Baigl D (2010) Photosensitive surfactants with various hydrophobic tail lengths for the photocontrol of genomic DNA conformation with improved efficiency. Chem Eur J 16(39):11890–11896

    Google Scholar 

  • Doganci MD, Sesli BU, Erbil HY, Binks BP, Salama IE (2011) Liquid marbles stabilized by graphite particles from aqueous surfactant solutions. Colloids Surf A 384(1–3):417–426

    Google Scholar 

  • Dorsey NE (1928) A new equation for the determination of surface tension from the form of a sessile drop or bubble. J Wash Acad Sci 18(19):505–509

    Google Scholar 

  • Eaker CB, Dickey MD (2016) Liquid metal actuation by electrical control of interfacial tension. Appl Phys Rev 3(3):031103

    Google Scholar 

  • Erbil H (2006) Surface chemistry of solid and liquid interfaces. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Forny L, Pezron I, Saleh K, Guigon P, Komunjer L (2007) Storing water in powder form by self-assembling hydrophobic silica nanoparticles. Powder Technol 171(1):15–24

    Google Scholar 

  • Frenkel M, Dombrovsky L, Multanen V, Danchuk V, Legchenkova I, Shoval S, Bormashenko Y, Binks BP, Bormashenko E (2018) Self-propulsion of water-supported liquid marbles filled with sulfuric acid. J Phys Chem B 122(32):7936–7942

    Google Scholar 

  • Fujii H, Matsumoto T, Izutani S, Kiguchi S, Nogi K (2006) Surface tension of molten silicon measured by microgravity oscillating drop method and improved sessile drop method. Acta Mater 54(5):1221–1225

    Google Scholar 

  • Fujimura Y, Iino M (2009) Magnetic field increases the surface tension of water. J Phys Conf Ser 1:012028

    Google Scholar 

  • Gao L, McCarthy TJ (2007) Ionic liquid marbles. Langmuir 23(21):10445–10447. https://doi.org/10.1021/la701901b

    Article  Google Scholar 

  • Gendelman O, Frenkel M, Fliagin V, Ivanova N, Danchuk V, Legchenkova I, Vilk A, Bormashenko E (2019) Study of the displacement of floating diamagnetic bodies by a magnetic field. Surf Innov 7(3–4):194–202

    Google Scholar 

  • Gilles de Gennes P, Brochard P, Quéré D (2003) Capillarity and wetting phenomena. Springer, New York

    MATH  Google Scholar 

  • Hamlett CA, Shirtcliffe NJ, McHale G, Ahn S, Bryant R, Doerr SH, Newton MI (2011) Effect of particle size on droplet infiltration into hydrophobic porous media as a model of water repellent soil. Environ Sci Technol 45(22):9666–9670

    Google Scholar 

  • Hayakawa M, Vialetto J, Anyfantakis M, Takinoue M, Rudiuk S, Morel M, Baigl D (2019) Effect of moderate magnetic fields on the surface tension of aqueous liquids: a reliable assessment. RSC Adv 9(18):10030–10033

    Google Scholar 

  • Jackel J, Hackwood S, Veselka J, Beni G (1983) Electrowetting switch for multimode optical fibers. Appl Opt 22(11):1765–1770

    Google Scholar 

  • Jeon J, Lee J-B, Chung SK, Kim D (2016) Magnetic liquid metal marble: characterization of lyophobicity and magnetic manipulation for switching applications. J Microelectromech Syst 25(6):1050–1057

    Google Scholar 

  • Jin J, Ooi CH, Dao DV, Nguyen N-T (2017) Coalescence processes of droplets and liquid marbles. Micromachines 8(11):336

    Google Scholar 

  • Jin J, Ooi CH, Sreejith KR, Dao DV, Nguyen N-T (2019) Dielectrophoretic trapping of a floating liquid marble. Phys Rev Appl 11(4):044059

    Google Scholar 

  • Jin J, Sreejith KR, Ooi CH, Dao DV, Nguyen N-T (2020) Critical trapping conditions for floating liquid marbles. Phys Rev Appl 13(1):014002

    Google Scholar 

  • Kavokine N, Anyfantakis M, Morel M, Rudiuk S, Bickel T, Baigl D (2016) Light-driven transport of a liquid marble with and against surface flows. Angew Chem Int Ed 55(37):11183–11187

    Google Scholar 

  • Kitazawa K, Ikezoe Y, Uetake H, Hirota N (2001) Magnetic field effects on water, air and powders. Phys B 294:709–714

    Google Scholar 

  • Kralchevsky PA, Nagayama K (1994) Capillary forces between colloidal particles. Langmuir 10(1):23–36

    Google Scholar 

  • Kralchevsky PA, Nagayama K (2000) Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv Coll Interface Sci 85(2–3):145–192

    Google Scholar 

  • Laborie B, Lachaussee F, Lorenceau E, Rouyer F (2013) How coatings with hydrophobic particles may change the drying of water droplets: incompressible surface versus porous media effects. Soft Matter 9(19):4822–4830. https://doi.org/10.1039/c3sm50164g

    Article  Google Scholar 

  • Li X, Wang R, Huang S, Wang Y, Shi H (2018a) A capillary rise method for studying the effective surface tension of monolayer nanoparticle-covered liquid marbles. Soft Matter 14(48):9877–9884

    Google Scholar 

  • Li X, Wang R, Shi H, Song B (2018b) Effective surface tension of liquid marbles using controllable nanoparticle monolayers. Appl Phys Lett 113(10):101602

    Google Scholar 

  • Li X, Wang Y, Huang J, Yang Y, Wang R, Geng X, Zang D (2017) Monolayer nanoparticle-covered liquid marbles derived from a sol-gel coating. Appl Phys Lett 111(26):261604

    Google Scholar 

  • Liu Z, Fu X, Binks BP, Shum HC (2015) Mechanical compression to characterize the robustness of liquid marbles. Langmuir 31(41):11236–11242

    Google Scholar 

  • Lugscheider E, Bobzin K (2001) The influence on surface free energy of PVD-coatings. Surf Coat Technol 142:755–760

    Google Scholar 

  • Marmur A (1988) Penetration of a small drop into a capillary. J Colloid Interface Sci 122(1):209–219

    Google Scholar 

  • Matsumoto T, Nakano T, Fujii H, Kamai M, Nogi K (2002) Precise measurement of liquid viscosity and surface tension with an improved oscillating drop method. Phys Rev E 65(3):031201

    Google Scholar 

  • McHale G, Herbertson D, Elliott S, Shirtcliffe N, Newton M (2007) Electrowetting of nonwetting liquids and liquid marbles. Langmuir 23(2):918–924

    Google Scholar 

  • McHale G, Newton MI (2011) Liquid marbles: principles and applications. Soft Matter 7(12):5473–5481

    Google Scholar 

  • McHale G, Newton MI, Shirtcliffe NJ, Geraldi NR (2011) Capillary origami: superhydrophobic ribbon surfaces and liquid marbles. Beilstein J Nanotechnol 2:145–151. https://doi.org/10.3762/bjnano.2.18

    Article  Google Scholar 

  • Meiron TS, Marmur A, Saguy IS (2004) Contact angle measurement on rough surfaces. J Colloid Interface Sci 274(2):637–644

    Google Scholar 

  • Moseke C, Gbureck U (2019) Surface treatment. In: Niinomi M (ed) Metals for biomedical devices. Elsevier, USA, pp 355–367

    Google Scholar 

  • Mueggenburg KE, Lin X-M, Goldsmith RH, Jaeger HM (2007) Elastic membranes of close-packed nanoparticle arrays. Nat Mater 6(9):656–660

    Google Scholar 

  • Newton M, Herbertson D, Elliott S, Shirtcliffe N, McHale G (2006) Electrowetting of liquid marbles. J Phys D Appl Phys 40(1):20

    Google Scholar 

  • Nguyen N-K, Ooi CH, Singha P, Jin J, Sreejith KR, Phan H-P, Nguyen N-T (2020) Liquid marbles as miniature reactors for chemical and biological applications. Processes 8(7):793

    Google Scholar 

  • Nguyen N-T, Hejazian M, Ooi CH, Kashaninejad N (2017) Recent advances and future perspectives on microfluidic liquid handling. Micromachines 8(6):186

    Google Scholar 

  • Nguyen N-T, Wereley ST, Shaegh SAM (2019) Fundamentals and applications of microfluidics. Artech House, Norwood

    Google Scholar 

  • Nguyen N-T, Wu Z (2004) Micromixers—a review. J Micromech Microeng 15(2):R1–R16. https://doi.org/10.1088/0960-1317/15/2/r01

    Article  Google Scholar 

  • Nguyen N-T, Zhu G, Chua Y-C, Phan V-N, Tan S-H (2010a) Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet. Langmuir 26(15):12553–12559

    Google Scholar 

  • Nguyen TH, Eshtiaghi N, Hapgood KP, Shen W (2010b) An analysis of the thermodynamic conditions for solid powder particles spreading over liquid surface. Powder Technol 201(3):306–310

    Google Scholar 

  • Nguyen TH, Hapgood K, Shen W (2010c) Observation of the liquid marble morphology using confocal microscopy. Chem Eng J 162(1):396–405

    Google Scholar 

  • Ogawa S, Watanabe H, Wang L, Jinnai H, McCarthy TJ, Takahara A (2014) Liquid marbles supported by monodisperse poly (methylsilsesquioxane) particles. Langmuir 30(30):9071–9075

    Google Scholar 

  • Oliveira NM, Reis RL, Mano JF (2017) The potential of liquid marbles for biomedical applications: a critical review. Adv Healthc Mater 6(19):1700192

    Google Scholar 

  • Ooi CH, Jin J, Sreejith KR, Nguyen AV, Evans GM, Nguyen N-T (2018) Manipulation of a floating liquid marble using dielectrophoresis. Lab Chip 18(24):3770–3779

    Google Scholar 

  • Ooi CH, Nguyen N-T (2015) Manipulation of liquid marbles. Microfluid Nanofluidics 19(3):483–495

    Google Scholar 

  • Ooi CH, Plackowski C, Nguyen AV, Vadivelu RK, John JAS, Dao DV, Nguyen N-T (2016) Floating mechanism of a small liquid marble. Sci Rep 6(1):21777. https://doi.org/10.1038/srep21777

    Article  Google Scholar 

  • Ooi CH, Vadivelu RK, St John J, Dao DV, Nguyen N-T (2015a) Deformation of a floating liquid marble. Soft Matter 11(23):4576–4583

    Google Scholar 

  • Ooi CH, Van Nguyen A, Evans GM, Gendelman O, Bormashenko E, Nguyen N-T (2015b) A floating self-propelling liquid marble containing aqueous ethanol solutions. Rsc Advances 5(122):101006–101012

    Google Scholar 

  • Paven M, Mayama H, Sekido T, Butt HJ, Nakamura Y, Fujii S (2016) Light-driven delivery and release of materials using liquid marbles. Adv Func Mater 26(19):3199–3206

    Google Scholar 

  • Pike N, Richard D, Foster W, Mahadevan L (2002) How aphids lose their marbles. Proc R Soc Lond B 269(1497):1211–1215

    Google Scholar 

  • Py C, Reverdy P, Doppler L, Bico J, Roman B, Baroud C (2007) Capillary origami. Phys Fluids 19(9):091104

    MATH  Google Scholar 

  • Rao AV, Kulkarni MM, Bhagat SD (2005) Transport of liquids using superhydrophobic aerogels. J Colloid Interface Sci 285(1):413–418

    Google Scholar 

  • Rasband W (2012) ImageJ: image processing and analysis in Java. Astrophys Source Code Libr 06013

  • Rotenberg Y, Boruvka L, Neumann A (1983) Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J Colloid Interface Sci 93(1):169–183

    Google Scholar 

  • Samiei E, Tabrizian M, Hoorfar M (2016) A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip 16(13):2376–2396

    Google Scholar 

  • Sato E, Yuri M, Fujii S, Nishiyama T, Nakamura Y, Horibe H (2015) Liquid marbles as a micro-reactor for efficient radical alternating copolymerization of diene monomer and oxygen. Chem Commun 51(97):17241–17244

    Google Scholar 

  • Shirtcliffe NJ, McHale G, Newton MI, Pyatt FB, Doerr SH (2006) Critical conditions for the wetting of soils. Appl Phys Lett 89(9):094101

    Google Scholar 

  • Singha P, Swaminathan S, Yadav AS, Varanakkottu SN (2019) Surfactant-mediated collapse of liquid marbles and directed assembly of particles at the liquid surface. Langmuir 35(13):4566–4576. https://doi.org/10.1021/acs.langmuir.8b03821

    Article  Google Scholar 

  • Sivan V, Tang SY, O'Mullane AP, Petersen P, Eshtiaghi N, Kalantar-zadeh K, Mitchell A (2013) Liquid metal marbles. Adv Func Mater 23(2):144–152

    Google Scholar 

  • Sreejith KR, Ooi CH, Dao DV, Nguyen N-T (2018a) Evaporation dynamics of liquid marbles at elevated temperatures. RSC Adv 8(28):15436–15443

    Google Scholar 

  • Sreejith KR, Ooi CH, Jin J, Dao DV, Nguyen N-T (2018b) Digital polymerase chain reaction technology–recent advances and future perspectives. Lab Chip 18(24):3717–3732

    Google Scholar 

  • Stalder AF, Melchior T, Müller M, Sage D, Blu T, Unser M (2010) Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf A 364(1–3):72–81

    Google Scholar 

  • Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D, Chen Y (2005) Artificial lotus leaf by nanocasting. Langmuir 21(19):8978–8981

    Google Scholar 

  • Tang S-Y, Sivan V, Khoshmanesh K, O'Mullane AP, Tang X, Gol B, Eshtiaghi N, Lieder F, Petersen P, Mitchell A (2013a) Electrochemically induced actuation of liquid metal marbles. Nanoscale 5(13):5949–5957

    Google Scholar 

  • Tang X, Tang S-Y, Sivan V, Zhang W, Mitchell A, Kalantar-zadeh K, Khoshmanesh K (2013b) Photochemically induced motion of liquid metal marbles. Appl Phys Lett 103(17):174104

    Google Scholar 

  • Teng P, Tian D, Fu H, Wang S (2020) Recent progress of electrowetting for droplet manipulation: from wetting to superwetting systems. Mater Chem Front 4(1):140–154

    Google Scholar 

  • Tian J, Arbatan T, Li X, Shen W (2010a) Liquid marble for gas sensing. Chem Commun 46(26):4734–4736

    Google Scholar 

  • Tian J, Arbatan T, Li X, Shen W (2010b) Porous liquid marble shell offers possibilities for gas detection and gas reactions. Chem Eng J 165(1):347–353

    Google Scholar 

  • Tosun A, Erbil H (2009) Evaporation rate of PTFE liquid marbles. Appl Surf Sci 256(5):1278–1283

    Google Scholar 

  • Tyowua AT (2018) Liquid Marbles: formation, characterization, and applications. CRC Press, Boca Raton

    Google Scholar 

  • Vadivelu RK, Ooi CH, Yao R-Q, Velasquez JT, Pastrana E, Diaz-Nido J, Lim F, Ekberg JA, Nguyen N-T, St John JA (2015) Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Sci Rep 5:15083

    Google Scholar 

  • Velev OD, Prevo BG, Bhatt KH (2003) On-chip manipulation of free droplets. Nature 426(6966):515–516

    Google Scholar 

  • Vialetto J, Hayakawa M, Kavokine N, Takinoue M, Varanakkottu SN, Rudiuk S, Anyfantakis M, Morel M, Baigl D (2017) Magnetic actuation of drops and liquid marbles using a deformable paramagnetic liquid substrate. Angew Chem Int Ed 56(52):16565–16570

    Google Scholar 

  • Vicente C, Yao W, Maris H, Seidel G (2002) Surface tension of liquid 4 He as measured using the vibration modes of a levitated drop. Phys Rev B 66(21):214504

    Google Scholar 

  • Wang C, He Y (2018) Timed disintegrating of the liquid marbles containing triton X-100. Colloids Surf A 558:367–372

    Google Scholar 

  • Wang R, Li X (2020) On the effective surface tension of powder-derived liquid marbles. Powder Technol 367:608–615. https://doi.org/10.1016/j.powtec.2020.04.028

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Google Scholar 

  • Whyman G, Bormashenko E (2009) Oblate spheroid model for calculation of the shape and contact angles of heavy droplets. J Colloid Interface Sci 331(1):174–177

    Google Scholar 

  • Whyman G, Bormashenko E (2015) Interpretation of elasticity of liquid marbles. J Colloid Interface Sci 457:148–151

    Google Scholar 

  • Wilkes ED, Basaran OA (1997) Forced oscillations of pendant (sessile) drops. Phys Fluids 9(6):1512–1528

    MathSciNet  MATH  Google Scholar 

  • Xu Z, Zhao Y, Dai L, Lin T (2014) Multi-responsive janus liquid marbles: the effect of temperature and acidic/basic vapors. Part Part Syst Charact 31(8):839–842

    Google Scholar 

  • Xue Y, Wang H, Zhao Y, Dai L, Feng L, Wang X, Lin T (2010) Magnetic liquid marbles: a “precise” miniature reactor. Adv Mater 22(43):4814–4818

    Google Scholar 

  • Zang D, Li J, Chen Z, Zhai Z, Geng X, Binks BP (2015) Switchable opening and closing of a liquid marble via ultrasonic levitation. Langmuir 31(42):11502–11507

    Google Scholar 

  • Ziesing G (1953) The determination of surface tension by sessile drop measurements, with application to mercury. Aust J Phys 6(1):86–95

    Google Scholar 

  • Zuo P, Ji J, Tadmor R, Liu J (2019) Wrinkling number and force of a particle raft in compression. Eur Phys J E 42(11):147

    Google Scholar 

Download references

Acknowledgements

CHO acknowledges funding support from the Australian Research Council (ARC) Discovery Early Career Research Award (DECRA) DE200100119. NTN acknowledges funding support from the ARC Discovery Project DP170100277. PS acknowledges funding support from Griffith University International Postgraduate Research Scholarship and Griffith University Postgraduate Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Trung Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singha, P., Ooi, C.H., Nguyen, NK. et al. Capillarity: revisiting the fundamentals of liquid marbles. Microfluid Nanofluid 24, 81 (2020). https://doi.org/10.1007/s10404-020-02385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-020-02385-9

Keywords

Navigation