Skip to main content
Log in

A Review on Fracture Analysis of CNT/Graphene Reinforced Composites for Structural Applications

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

CNT/Graphene reinforced composites due to their exceptional mechanical, electrical, thermal, and optical characteristics that have attracted the scientific community working in the area of material development. In protraction, this review work on fracture analysis of CNT/Graphene reinforced composites is summarized from an exponentially growing literature inclusive of fabrication methods and present and potential applications. Owing to these composites' enormous structural applications, the number of literature works on the fracture of the structures using various models is summarized here. The literature contains several techniques to model the CNT/graphene composites that include: Halpin Tsai model, modified Halpin Tsai model, Mori–Tanaka model, homogenization approach, etc. which are discussed in detail. Various combined analysis for fracture toughness and crack growth analysis based on fracture mechanics are cited here using different computational formulations like finite element method (FEM), element free Galerkin method, reproducing kernel particle method, meshless local Petrov–Galerkin method, extended finite element method (XFEM), isogeometric analysis (IGA), etc. In particular, the authors have reported the work done in the area of fracture analysis of these novel composites since its inception that is inclusive of its structure, fabrication, properties, mathematical modeling, applications, and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Affdl JH, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352

    Article  Google Scholar 

  2. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1800

    Article  Google Scholar 

  3. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube–polymer composites: strength and weakness. Adv Mater 12(10):750–753

    Article  Google Scholar 

  4. Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. In: Carbon nanotubes, Springer, Berlin, pp 391–425

  5. Anderson TL (2017) Fracture mechanics: fundamentals and applications. CRC Press

    Book  MATH  Google Scholar 

  6. Ansari R, Rouhi S, Eghbalian M (2017) On the elastic properties of curved carbon nanotubes/polymer nanocomposites: a modified rule of mixture. J Reinf Plast Compos 36(14):991–1008

    Article  Google Scholar 

  7. Ansari S, Giannelis EP (2009) Functionalized graphene sheet—poly (vinylidene fluoride) conductive nanocomposites. J Polym Sci Part B Polym Phys 47(9):888–897

    Article  Google Scholar 

  8. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1(1):60–65

    Article  Google Scholar 

  9. Ashton JE, Halpin JC, Petit PH (1969) Primer on composite materials: analysis, Technomic Publishing Company.

  10. ASTM D 2344-00 (2001) Test method for short beam strength of polymer matrix composite materials and their laminates by short-beam method, American Society for Testing and Materials, West Conshohocken, PA

  11. ASTM I (2007) Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials. ASTM D5045-99

  12. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MathSciNet  MATH  Google Scholar 

  13. Avella M, Bondioli F, Cannillo V, Errico ME, Ferrari AM, Focher B, Malinconico M, Manfredini T, Montorsi M (2004) Preparation, characterisation and computational study of poly (caprolactone) based nanocomposites. Mater Sci Technol 20(10):1340–1344

    Article  Google Scholar 

  14. Avouris P (2010) Graphene: electronic and photonic properties and devices. Nano Lett 10(11):4285–4294

    Article  Google Scholar 

  15. Azarniya A, Safavi MS, Sovizi S, Azarniya A, Chen B, Madaah Hosseini HR, Ramakrishna S (2017) Metallurgical challenges in carbon nanotube-reinforced metal matrix nanocomposites. Metals 7(10):384

    Article  Google Scholar 

  16. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298(5602):2361–2366

    Article  Google Scholar 

  17. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294(5545):1317–1320

    Article  Google Scholar 

  18. Bailey JE, Barker HA (1971) Ceramic fibres for the reinforcement of gas turbine blades. In: Ceramics in severe environments, Springer, Boston, pp 341–359

  19. Bal S, Samal SS (2007) Carbon nanotube reinforced polymer composites—a state of the art. Bull Mater Sci 30(4):379

    Article  Google Scholar 

  20. Bao H, Ruan X, Fisher TS (2010) Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations. Opt Express 18(6):6347–6359

    Article  Google Scholar 

  21. Barber AH, Cohen SR, Kenig S, Wagner HD (2004) Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix. Compos Sci Technol 64(15):2283–2289

    Article  Google Scholar 

  22. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792

    Article  Google Scholar 

  23. Bazli L, Khavandi A, Boutorabi MA, Karrabi M (2016) Morphology and viscoelastic behavior of silicone rubber/EPDM/Cloisite 15A nanocomposites based on Maxwell model. Iran Polym J 25(11):907–918

    Article  Google Scholar 

  24. Bazli L, Siavashi M, Shiravi A (2019) A review of carbon nanotube/TiO2 composite prepared via sol-gel method. J Compos Compd 1(1):1–9

    Google Scholar 

  25. Bekyarova E, Kalinina I, Itkis ME, Beer L, Cabrera N, Haddon RC (2007) Mechanism of ammonia detection by chemically functionalized single-walled carbon nanotubes: in situ electrical and optical study of gas analyte detection. J Am Chem Soc 129(35):10700–10706

    Article  Google Scholar 

  26. Belhouideg S, Lagache M (2014) Effects of the distribution and geometry of porosity on the macroscopic poro-elastic behavior: compacted exfoliated vermiculite. Int J Mech 8:223–230

    Google Scholar 

  27. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Article  MATH  Google Scholar 

  28. Belytschko T, Lu YY, Gu L, Tabbara M (1995) Element-free Galerkin methods for static and dynamic fracture. Int J Solids Struct 32(17–18):2547–2570

    Article  MATH  Google Scholar 

  29. Benveniste Y (1987) A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech Mater 6(2):147–157

    Article  Google Scholar 

  30. Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605

    Article  Google Scholar 

  31. Bhardwaj G, Godara RK, Khanna K, Patil RU (2020) A semi-homogenized extended isogeometric analysis approach for fracture in functionally graded materials containing discontinuities. Proc Inst Mech Eng Part C J Mech Eng Sci 234(11):2211–2232

    Article  Google Scholar 

  32. Bhardwaj G, Singh IV, Mishra BK, Bui TQ (2015) Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions. Compos Struct 126:347–359

    Article  Google Scholar 

  33. Bhardwaj G, Upadhyay AK, Pandey R, Shukla KK (2013) Non-linear flexural and dynamic response of CNT reinforced laminated composite plates. Compos B Eng 45(1):89–100

    Article  Google Scholar 

  34. Biro LP, Lazarescu S, Lambin P, Thiry PA, Fonseca A, Nagy JB, Lucas AA (1997) Scanning tunneling microscope investigation of carbon nanotubes produced by catalytic decomposition of acetylene. Phys Rev B 56(19):12490

    Article  Google Scholar 

  35. Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK (2008) Graphene-based liquid crystal device. Nano Lett 8(6):1704–1708

    Article  Google Scholar 

  36. Boem HP (1966) Advance in catalysis, vol 1, Acad. Press, New York, p 16

  37. Britto PJ, Santhanam KS, Rubio A, Alonso JA, Ajayan PM (1999) Improved charge transfer at carbon nanotube electrodes. Adv Mater 11(2):154–157

    Article  Google Scholar 

  38. Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41(1):121–125

    Article  Google Scholar 

  39. Bronikowski MJ (2006) CVD growth of carbon nanotube bundle arrays. Carbon 44(13):2822–2832

    Article  Google Scholar 

  40. Cai D, Yusoh K, Song M (2009) The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnology 20(8):085712

    Article  Google Scholar 

  41. Candelario VM, Moreno R, Guiberteau F, Ortiz AL (2016) Enhancing the sliding-wear resistance of SiC nanostructured ceramics by adding carbon nanotubes. J Eur Ceram Soc 36(13):3083–3089

    Article  Google Scholar 

  42. Candelario VM, Moreno R, Shen Z, Guiberteau F, Ortiz AL (2017) Liquid-phase assisted spark-plasma sintering of SiC nanoceramics and their nanocomposites with carbon nanotubes. J Eur Ceram Soc 37(5):1929–1936

    Article  Google Scholar 

  43. Candelario VM, Moreno R, Shen Z, Ortiz AL (2015) Aqueous colloidal processing of nano-SiC and its nano-Y3Al5O12 liquid-phase sintering additives with carbon nanotubes. J Eur Ceram Soc 35(13):3363–3368

    Article  Google Scholar 

  44. Cannillo V, Bondioli F, Lusvarghi L, Montorsi M, Avella M, Errico ME, Malinconico M (2006) Modeling of ceramic particles filled polymer–matrix nanocomposites. Compos Sci Technol 66(7–8):1030–1037

    Article  Google Scholar 

  45. Cao A, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM (2005) Super-compressible foamlike carbon nanotube films. Science 310(5752):1307–1310

    Article  Google Scholar 

  46. Cao A, Veedu VP, Li X, Yao Z, Ghasemi-Nejhad MN, Ajayan PM (2005) Multifunctional brushes made from carbon nanotubes. Nat Mater 4(7):540–545

    Article  Google Scholar 

  47. Carlson TA, Marsh CP, Kriven WM, Stynoski PB, Welch CR (2013) Processing, microstructure, and properties of carbon nanotube reinforced silicon carbide. In: Composite materials and joining technologies for composites, vo 7, Springer, New York, NY, pp 147–159

  48. Carlsson LA (1996) Fracture of laminated composites with interleaves. In: Key engineering materials, Trans Tech Publications Ltd, vol 120, pp 489–520

  49. Chandrasekaran S, Sato N, Tolle F, Mulhaupt R, Fiedler B, Schulte K (2014) Fracture toughness and failure mechanism of graphene based epoxy composites. Compos Sci Technol 97:90–99

    Article  Google Scholar 

  50. Chawla N, Sidhu RS, Ganesh VV (2006) Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites. Acta Mater 54(6):1541–1548

    Article  Google Scholar 

  51. Che G, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393(6683):346–349

    Article  Google Scholar 

  52. Chen G, Wu J, Lu Q, Gutierrez HR, Xiong Q, Pellen ME, Petko JS, Werner DH, Eklund PC (2008) Optical antenna effect in semiconducting nanowires. Nano Lett 8(5):1341–1346

    Article  Google Scholar 

  53. Chou TW (2005) Microstructural design of fiber composites. Cambridge University Press

    Google Scholar 

  54. Chu K, Jia CC, Li WS (2012) Effective thermal conductivity of graphene-based composites. Appl Phys Lett 101(12):121916

    Article  Google Scholar 

  55. Chunfeng D, Zhang X, Yanxia MA, Dezun W (2007) Fabrication of aluminum matrix composite reinforced with carbon nanotubes. Rare Met 26(5):450–455

    Article  Google Scholar 

  56. Collins PG, Avouris P (2000) Nanotubes for electronics. Sci Am 283(6):62–69

    Article  Google Scholar 

  57. Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3(3):72

    Article  Google Scholar 

  58. Dai CA, Hsiao CC, Weng SC, Kao AC, Liu CP, Tsai WB, Ma CC (2009) A membrane actuator based on an ionic polymer network and carbon nanotubes: the synergy of ionic transport and mechanical properties. Smart Mater Struct 18(8):085016

    Article  Google Scholar 

  59. Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35(12):1035–1044

    Article  Google Scholar 

  60. Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605):147–150

    Article  Google Scholar 

  61. de Lavoisier AL (2019) Traite elementaire de chimie. Maxtor France

  62. Deck CP, Vecchio K (2005) Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes. Carbon 43(12):2608–2617

    Article  Google Scholar 

  63. Dekker C (1999) Carbon nanotubes as molecular quantum wires. Phys Today 52:22–30

    Article  Google Scholar 

  64. Deng CF, Wang DZ, Zhang XX, Li AB (2007) Processing and properties of carbon nanotubes reinforced aluminum composites. Mater Sci Eng A 444(1–2):138–145

    Article  Google Scholar 

  65. Dervishi E, Li Z, Xu Y, Saini V, Biris AR, Lupu D, Biris AS (2009) Carbon nanotubes: synthesis, properties, and applications. Part Sci Technol 27(2):107–125

    Article  Google Scholar 

  66. Derycke V, Martel R, Appenzeller J, Avouris P (2001) Carbon nanotube inter-and intramolecular logic gates. Nano Lett 1(9):453–456

    Article  Google Scholar 

  67. Di Leonardo S, Nistal A, Catalanotti G, Hawkins SC, Falzon BG (2019) Mode I interlaminar fracture toughness of thin-ply laminates with CNT webs at the crack interface. Compos Struct 225:111178

    Article  Google Scholar 

  68. Domun N, Hadavinia H, Zhang T, Sainsbury T, Liaghat GH, Vahid S (2015) Improving the fracture toughness and the strength of epoxy using nanomaterials—a review of the current status. Nanoscale 7(23):10294–10329

    Article  Google Scholar 

  69. Dong Y, Bhattacharyya D, Hunter PJ (2008) Experimental characterisation and object-oriented finite element modelling of polypropylene/organoclay nanocomposites. Compos Sci Technol 68(14):2864–2875

    Article  Google Scholar 

  70. Dormieux L, Kondo D, Ulm FJ (2006) Microporomechanics. Wiley

    Book  MATH  Google Scholar 

  71. Dresselhaus G, Dresselhaus MS, Saito R (1998) Physical properties of carbon nanotubes. World Scientific

    MATH  Google Scholar 

  72. Dresselhaus MS (2001) Burn and interrogate. Science 292(5517):650–651

    Article  Google Scholar 

  73. El Moumen, A., Tarfaoui, M., Lafdi, K., (2018): Computational homogenization of mechanical properties for laminate composites reinforced with thin film made of carbon nanotubes. Applied Composite Materials, Vol. 25(3), pp. 569–588

    Article  Google Scholar 

  74. Endo M, Koyama S, Matsuda Y, Hayashi T, Kim YA (2005) Thrombogenicity and blood coagulation of a microcatheter prepared from carbon nanotube−nylon-based composite. Nano Lett 5(1):101–105

    Article  Google Scholar 

  75. Endo M, Strano MS, Ajayan PM (2007) Potential applications of carbon nanotubes. In: Carbon nanotubes, Springer, Berlin, pp 13–62

  76. Esconjauregui S, Whelan CM, Maex K (2009) The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 47(3):659–669

    Article  Google Scholar 

  77. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A Math Phys Sci 241(1226):376–396

    MathSciNet  MATH  Google Scholar 

  78. Esmizadeh E, Naderi G, Ghoreishy MHR (2013) Modification of Theoretical models to predict mechanical behavior of PVC/NBR/organoclay nanocomposites. J Appl Polym Sci 130(5):3229–3239

    Article  Google Scholar 

  79. Feng C, Kitipornchai S, Yang J (2017) Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos B Eng 110:132–140

    Article  Google Scholar 

  80. Feng C, Liu K, Wu JS, Liu L, Cheng JS, Zhang Y, Sun Y, Li Q, Fan S, Jiang K (2010) Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv Func Mater 20(6):885–891

    Article  Google Scholar 

  81. Feng CX, Duan J, Yang JH, Huang T, Zhang N, Wang Y, Zheng XT, Zhou ZW (2015) Carbon nanotubes accelerated poly (vinylidene fluoride) crystallization from miscible poly (vinylidene fluoride)/poly (methyl methacrylate) blend and the resultant crystalline morphologies. Eur Polymer J 68:175–189

    Article  Google Scholar 

  82. Fereidoon A, Rajabpour M, Hemmatian H (2013) Fracture analysis of epoxy/SWCNT nanocomposite based on global–local finite element model. Compos B Eng 54:400–408

    Article  Google Scholar 

  83. Fornes TD, Paul DR (2003) Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44(17):4993–5013

    Article  Google Scholar 

  84. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sour 153(2):413–418

    Article  Google Scholar 

  85. Frank IW, Tanenbaum DM, van der Zande AM, McEuen PL (2007) Mechanical properties of suspended graphene sheets. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenomena 25(6):2558–2561

    Article  Google Scholar 

  86. Ganesan Y, Peng C, Lu Y, Loya PE, Moloney P, Barrera E, Yakobson BI, Tour JM, Ballarini R, Lou J (2011) Interface toughness of carbon nanotube reinforced epoxy composites. ACS Appl Mater Interfaces 3(2):129–134

    Article  Google Scholar 

  87. Ganesh EN (2013) Single walled and multi walled carbon nanotube structure, synthesis and applications. Int J Innov Technol Explor Eng 2(4):311–320

    Google Scholar 

  88. Garg AC, Mai YW (1988) Failure mechanisms in toughened epoxy resins—A review. Compos Sci Technol 31(3):179–223

    Article  Google Scholar 

  89. Gavillet J, Loiseau A, Ducastelle F, Thair S, Bernier P, Stephan O, Thibault J, Charlier JC (2002) Microscopic mechanisms for the catalyst assisted growth of single-wall carbon nanotubes. Carbon 40(10):1649–1663

    Article  Google Scholar 

  90. Gdoutos EE, Konsta-Gdoutos MS, Danoglidis PA (2016) Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: a fracture mechanics experimental study. Cem Concr Compos 70:110–118

    Article  Google Scholar 

  91. Gibson RF, Ayorinde EO, Wen YF (2007) Vibrations of carbon nanotubes and their composites: a review. Compos Sci Technol 67(1):1–28

    Article  Google Scholar 

  92. Gojny FH, Wichmann MH, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos Sci Technol 65(15–16):2300–2313

    Article  Google Scholar 

  93. Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64(15):2363–2371

    Article  Google Scholar 

  94. Gopalakrishnan K, Birgisson B, Taylor P, Attoh-Okine NO (eds) (2011) Nanotechnology in civil infrastructure: a paradigm shift, Springer

  95. Goyal RK, Tiwari AN, Negi YS (2008) Microhardness of PEEK/ceramic micro-and nanocomposites: correlation with Halpin-Tsai model. Mater Sci Eng A 491(1–2):230–236

    Article  Google Scholar 

  96. Guo GY, Chu KC, Wang DS, Duan CG (2004) Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations. Phys Rev B 69(20):205416

    Article  Google Scholar 

  97. Guo JJ, Lewis JA (1999) Aggregation effects on the compressive flow properties and drying behavior of colloidal silica suspensions. J Am Ceram Soc 82(9):2345–2358

    Article  Google Scholar 

  98. Guth E (1945) Theory of filler reinforcement. Rubber Chem Technol 18(3):596–604

    Article  Google Scholar 

  99. Hafner JH, Cheung CL, Woolley AT, Lieber CM (2001) Structural and functional imaging with carbon nanotube AFM probes. Prog Biophys Mol Biol 77(1):73–110

    Article  Google Scholar 

  100. Hajiaboutalebi M, Rajabi M, Khanali O (2017) Physical and mechanical properties of SiC-CNTs nano-composites produced by a rapid microwave process. J Mater Sci Mater Electron 28(12):8986–8992

    Article  Google Scholar 

  101. Halpin JC (1969) Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater 3(4):732–734

    Article  Google Scholar 

  102. Hamdia KM, Msekh MA, Silani M, Vu-Bac N, Zhuang X, Nguyen-Thoi T, Rabczuk T (2015) Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Compos Struct 133:1177–1190

    Article  Google Scholar 

  103. Han D, Mei H, Xiao S, Dassios KG, Cheng L (2018) A review on the processing technologies of carbon nanotube/silicon carbide composites. J Eur Ceram Soc 38(11):3695–3708

    Article  Google Scholar 

  104. Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10(4):335–342

    Article  MathSciNet  MATH  Google Scholar 

  105. Hashin ZSHTR, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10(4):343–352

    Article  MathSciNet  MATH  Google Scholar 

  106. Hasnain MS, Nayak AK (2019) Carbon nano-tubes for targeted drug delivery. Springer

    Book  Google Scholar 

  107. Heersche HB, Jarillo-Herrero P, Oostinga JB, Vandersypen LM, Morpurgo AF (2007) Bipolar supercurrent in graphene. Nature 446(7131):56–59

    Article  Google Scholar 

  108. Heshmati M, Yas MH (2013) Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby–Mori–Tanaka approach. J Mech Sci Technol 27(11):3403–3408

    Article  Google Scholar 

  109. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13(4):213–222

    Article  Google Scholar 

  110. Hinderling C, Keles Y, Stockli T, Knapp HF, De los Arcos, T., Oelhafen, P., Korczagin, I., Hempenius, M.A., Vancso, G.J., Pugin, R., Heinzelmann, H. (2004) Organometallic block copolymers as catalyst precursors for templated carbon nanotube growth. Adv Mater 16(11):876–879

    Article  Google Scholar 

  111. Hsieh TH, Kinloch AJ, Masania K, Taylor AC, Sprenger S (2010) The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer 51(26):6284–6294

    Article  Google Scholar 

  112. Hsieh TH, Kinloch AJ, Taylor AC, Kinloch IA (2011) The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci 46(23):7525

    Article  Google Scholar 

  113. Hu H, Onyebueke L, Abatan A (2010) Characterizing and modeling mechanical properties of nanocomposites-review and evaluation. J Miner Mater Charact Eng 9(04):275

    Google Scholar 

  114. Huang H, Liu CH, Wu Y, Fan S (2005) Aligned carbon nanotube composite films for thermal management. Adv Mater 17(13):1652–1656

    Article  Google Scholar 

  115. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  116. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  117. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Article  Google Scholar 

  118. Inagaki, M. ed., (2000): New carbons-control of structure and functions. Elsevier.

  119. Inagaki M, Kang F, Toyoda M, Konno H (2013) Advanced materials science and engineering of carbon. Butterworth-Heinemann

    Google Scholar 

  120. Inagaki M, Radovic LR (2002) Nanocarbons. Carbon (New York, NY) 40(12):2279–2282

    Google Scholar 

  121. Ionescu E, Kleebe HJ, Riedel R (2012) Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties. Chem Soc Rev 41(15):5032–5052

    Article  Google Scholar 

  122. Ishai O, Rosenthal H, Sela N, Drukker E (1988) Effect of selective adhesive interleaving on interlaminar fracture toughness of graphite/epoxy composite laminates. Composites 19(1):49–54

    Article  Google Scholar 

  123. Jancar J (2000) Impact behavior of a short glass fiber reinforced thermoplastic polyurethane. Polym Compos 21(3):369–376

    Article  Google Scholar 

  124. Jang YT, Moon SI, Ahn JH, Lee YH, Ju BK (2004) A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes. Sens Actuators B Chem 99(1):118–122

    Article  Google Scholar 

  125. Jarosz P, Schauerman C, Alvarenga J, Moses B, Mastrangelo T, Raffaelle R, Ridgley R, Landi B (2011) Carbon nanotube wires and cables: near-term applications and future perspectives. Nanoscale 3(11):4542–4553

    Article  Google Scholar 

  126. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949):654–657

    Article  Google Scholar 

  127. Jenq Y, Shah SP (1985) Two parameter fracture model for concrete. J Eng Mech 111(10):1227–1241

    Google Scholar 

  128. Jeronimo K, Cruz VL, Ramos J, Vega JF, Trujillo M, Muller AJ, Martinez-Salazar J (2014) Computer simulations of the early stages of crystal nucleation of linear and short chain branched polyethylene on carbon nanotubes. Eur Polymer J 56:194–204

    Article  Google Scholar 

  129. Jiang D, Zhang J, Lv Z (2012) Multi-wall carbon nanotubes (MWCNTs)–SiC composites by laminated technology. J Eur Ceram Soc 32(7):1419–1425

    Article  Google Scholar 

  130. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48(2):530–541

    Article  Google Scholar 

  131. Jones RM (1999) Mechanics of composite materials. Taylor & Francis. Inc., New York

    Google Scholar 

  132. Jordan, J., Jacob, K.I., Tannenbaum, R., Sharaf, M.A. and Jasiuk, I., 2005. Experimental trends in polymer nanocomposites—a review. Materials science and engineering: A, 393(1–2), pp. 1–11

    Google Scholar 

  133. Jorio A, Dresselhaus G, Dresselhaus MS (eds) (2007) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications, vol 111, Springer

  134. Jose-Yacaman M, Miki-Yoshida M, Rendon L, Santiesteban JG (1993) Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett 62(6):657–659

    Article  Google Scholar 

  135. Joshi P, Upadhyay SH (2014) Evaluation of elastic properties of multi walled carbon nanotube reinforced composite. Comput Mater Sci 81:332–338

    Article  Google Scholar 

  136. Journet C, Maser WK, Bernier P, Loiseau A, de La Chapelle ML, Lefrant DS, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758

    Article  Google Scholar 

  137. Kalaitzidou K, Fukushima H, Miyagawa H, Drzal LT (2007) Flexural and tensile moduli of polypropylene nanocomposites and comparison of experimental data to Halpin-Tsai and Tandon-Weng models. Polym Eng Sci 47(11):1796–1803

    Article  Google Scholar 

  138. Karapappas P, Vavouliotis A, Tsotra P, Kostopoulos V, Paipetis A (2009) Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. J Compos Mater 43(9):977–985

    Article  Google Scholar 

  139. Kaseem M, Hamad K, Ko YG (2016) Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review. Eur Polymer J 79:36–62

    Article  Google Scholar 

  140. Kausar A, Rafique I, Muhammad B (2016) Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polym-Plast Technol Eng 55(11):1167–1191

    Article  Google Scholar 

  141. Kausch HH (1987) Polymer fracture, 2nd edn. Springer, Berlin

    Google Scholar 

  142. Ke LL, Yang J, Kitipornchai S (2010) Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos Struct 92(3):676–683

    Article  Google Scholar 

  143. Kelly, B.T., (1981): Physics of graphite.

  144. Kempa K, Kimball B, Rybczynski J, Huang ZP, Wu PF, Steeves D, Sennett M, Giersig M, Rao DVGLN, Carnahan DL, Wang DZ (2003) Photonic crystals based on periodic arrays of aligned carbon nanotubes. Nano Lett 3(1):13–18

    Article  Google Scholar 

  145. Kempa K, Rybczynski J, Huang Z, Gregorczyk K, Vidan A, Kimball B, Carlson J, Benham G, Wang Y, Herczynski A, Ren ZF (2007) Carbon nanotubes as optical antennae. Adv Mater 19(3):421–426

    Article  Google Scholar 

  146. Khare R (2005) Carbon nanotube based composites—a review. J Miner Mater Charact Eng 4(01):31

    Google Scholar 

  147. Kim GM, Nam IW, Yang B, Yoon HN, Lee HK, Park S (2019) Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: the state of the art. Compos Struct 227:111244

    Article  Google Scholar 

  148. Kim UJ, Gutierrez HR, Kim JP, Eklund PC (2005) Effect of the tube diameter distribution on the high-temperature structural modification of bundled single-walled carbon nanotubes. J Phys Chem B 109(49):23358–23365

    Article  Google Scholar 

  149. Kimizuka O, Tanaike O, Yamashita J, Hiraoka T, Futaba DN, Hata K, Machida K, Suematsu S, Tamamitsu K, Saeki S, Yamada Y (2008) Electrochemical doping of pure single-walled carbon nanotubes used as supercapacitor electrodes. Carbon 46(14):1999–2001

    Article  Google Scholar 

  150. Kingston C, Zepp R, Andrady A, Boverhof D, Fehir R, Hawkins D, Vejins V (2014) Release characteristics of selected carbon nanotube polymer composites. Carbon 68:33–57

    Article  Google Scholar 

  151. Kingston C, Zepp R, Andrady A, Boverhof D, Fehir R, Hawkins D, Roberts J, Sayre P, Shelton B, Sultan Y, Vejins V (2014) Release characteristics of selected carbon nanotube polymer composites. Carbon 68:33–57

    Article  Google Scholar 

  152. Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362(6414):547–553

    Article  Google Scholar 

  153. Kocabas C, Hur SH, Gaur A, Meitl MA, Shim M, Rogers JA (2005) Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1(11):1110–1116

    Article  Google Scholar 

  154. Kohler AR, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8–9):927–937

    Article  Google Scholar 

  155. Konsta-Gdoutos MS, Metaxa ZS, Shah SP (2010) Highly dispersed carbon nanotube reinforced cement based materials. Cem Concr Res 40(7):1052–1059

    Article  Google Scholar 

  156. Kordas K, Mustonen T, Toth G, Jantunen H, Lajunen M, Soldano C, Ajayan PM (2006) Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2(8–9):1021–1025

    Article  Google Scholar 

  157. Krenchel H (1964) Fibre reinforcement; theoretical and practical investigations of the elasticity and strength of fibre-reinforced materials

  158. Kreupl F, Graham AP, Duesberg GS, Steinhogl W, Liebau M, Unger E, Honlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64(1–4):399–408

    Article  Google Scholar 

  159. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58(20):14013

    Article  Google Scholar 

  160. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318(6042):162–163

    Article  Google Scholar 

  161. Kruger M, Widmer I, Nussbaumer T, Buitelaar M, Schonenberger C (2003) Sensitivity of single multiwalled carbon nanotubes to the environment. New J Phys 5(1):138

    Article  Google Scholar 

  162. Kulkarni M, Carnahan D, Kulkarni K, Qian D, Abot JL (2010) Elastic response of a carbon nanotube fiber reinforced polymeric composite: a numerical and experimental study. Compos B Eng 41(5):414–421

    Article  Google Scholar 

  163. Kunz-Douglass S, Beaumont PW, Ashby MF (1980) A model for the toughness of epoxy-rubber particulate composites. J Mater Sci 15(5):1109–1123

    Article  Google Scholar 

  164. Kuronuma Y, Shindo Y, Takeda T, Narita F (2010) Fracture behaviour of cracked carbon nanotube-based polymer composites: experiments and finite element simulations. Fatigue Fract Eng Mater Struct 33(2):87–93

    Article  Google Scholar 

  165. Kuzumaki T, Miyazawa K, Ichinose H, Ito K (1998) Processing of carbon nanotube reinforced aluminum composite. J Mater Res 13(9):2445–2449

    Article  Google Scholar 

  166. Landau LD, Lifshitz EM, Pitaevskii LP (1984): Electrodynamics of Continuous Media. New York: Pergamon Press

    Google Scholar 

  167. Landau LD, Bell JS, Kearsley MJ, Pitaevskii LP, Lifshitz EM, Sykes JB (2013) Electrodynamics of continuous media, vol 8, Elsevier

  168. Laredo E, Grimau M, Bello A, Wu D (2013) Molecular dynamics and crystallization precursors in polylactide and poly (lactide)/CNT biocomposites in the insulating state. Eur Polymer J 49(12):4008–4019

    Article  Google Scholar 

  169. Lauke B (2008) On the effect of particle size on fracture toughness of polymer composites. Compos Sci Technol 68(15–16):3365–3372

    Article  Google Scholar 

  170. Le HH, Wiebner S, Das A, Fischer D (2016) Selective wetting of carbon nanotubes in rubber compounds—effect of the ionic liquid as dispersing and coupling agent. Eur Polymer J 75:13–24

    Article  Google Scholar 

  171. Leckband D (2000) Measuring the forces that control protein interactions. Annu Rev Biophys Biomol Struct 29(1):1–26

    Article  Google Scholar 

  172. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  173. Lee HR, Hwang OJ, Cho B, Park KC (2020) Scanning electron imaging with vertically aligned carbon nanotube (CNT) based cold cathode electron beam (c-beam). Vacuum 182:109696

    Article  Google Scholar 

  174. Lee JK, Lee SP, Cho KS, Byun JH, Bae DS (2011) Characterization of SiCf/SiC and CNT/SiC composite materials produced by liquid phase sintering. J Nucl Mater 417(1–3):371–374

    Article  Google Scholar 

  175. Lee SH, Kim H, Hang S, Cheong SK (2012) Interlaminar fracture toughness of composite laminates with CNT-enhanced nonwoven carbon tissue interleave. Compos Sci Technol 73:1–8

    Article  Google Scholar 

  176. Lee SH, Noguchi H, Kim YB, Cheong SK (2002) Effect of interleaved non-woven carbon tissue on interlaminar fracture toughness of laminated composites: part I-Mode II. J Compos Mater 36(18):2153–2168

    Article  Google Scholar 

  177. Lee SH, Noguchi H, Kim YB, Cheong SK (2002) Effect of interleaved non-woven carbon tissue on interlaminar fracture toughness of laminated composites: part II–Mode I. J Compos Mater 36(18):2169–2181

    Article  Google Scholar 

  178. Lee SP, Jin JW, Kang KW (2014) Probabilistic analysis for mechanical properties of glass/epoxy composites using homogenization method and Monte Carlo simulation. Renew Energy 65:219–226

    Article  Google Scholar 

  179. Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8):2581–2602

    Article  Google Scholar 

  180. Lewis TB, Nielsen LE (1970) Dynamic mechanical properties of particulate-filled composites. J Appl Polym Sci 14(6):1449–1471

    Article  Google Scholar 

  181. Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68(6):1227–1249

    Article  Google Scholar 

  182. Li J, Hu L, Wang L, Zhou Y, Gruner G, Marks TJ (2006) Organic light-emitting diodes having carbon nanotube anodes. Nano Lett 6(11):2472–2477

    Article  Google Scholar 

  183. Li X, Tao L, Chen Z, Fang H, Li X, Wang X, Xu JB, Zhu H (2017) Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl Phys Rev 4(2):021306

    Article  Google Scholar 

  184. Liao J, Tan MJ (2011) A simple approach to prepare Al/CNT composite: spread-dispersion (SD) method. Mater Lett 65(17–18):2742–2744

    Article  Google Scholar 

  185. Lidorikis E, Ferrari AC (2009) Photonics with multiwall carbon nanotube arrays. ACS Nano 3(5):1238–1248

    Article  Google Scholar 

  186. Lifshitz EM, Pitaevskii LP, Sykes JB, Bell JB, Kearsley MJ (1984) Electrodynamics of continuous media. Pergamon Press

    Google Scholar 

  187. Lin F, Xiang Y, Shen HS (2017) Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites–a molecular dynamics simulation. Compos B Eng 111:261–269

    Article  Google Scholar 

  188. Lin MF (2000) Optical spectra of single-wall carbon nanotube bundles. Phys Rev B 62(19):13153

    Article  Google Scholar 

  189. Lin MF, Shung KWK (1994) Plasmons and optical properties of carbon nanotubes. Phys Rev B 50(23):17744

    Article  Google Scholar 

  190. Liu P, Wei Y, Jiang K, Sun Q, Zhang X, Fan S, Zhang S, Ning C, Deng J (2006) Thermionic emission and work function of multiwalled carbon nanotube yarns. Phys Rev B 73(23):235412

    Article  Google Scholar 

  191. Liu X, Lee C, Zhou C, Han J (2001) Carbon nanotube field-effect inverters. Appl Phys Lett 79(20):3329–3331

    Article  Google Scholar 

  192. Liu ZY, Xiao BL, Wang WG, Ma ZY (2012) Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50(5):1843–1852

    Article  Google Scholar 

  193. Lordi V, Yao N (2000) Molecular mechanics of binding in carbon-nanotube–polymer composites. J Mater Res 15(12):2770–2779

    Article  Google Scholar 

  194. Lu W, Zu M, Byun JH, Kim BS, Chou TW (2012) State of the art of carbon nanotube fibers: opportunities and challenges. Adv Mater 24(14):1805–1833

    Article  Google Scholar 

  195. Lu Z, Jiang D, Zhang J, Lin Q (2009) Preparation and properties of multi-wall carbon nanotube/SiC composites by aqueous tape casting. Sci China Ser E Technol Sci 52(1):132–136

    Article  Google Scholar 

  196. Luo JJ, Daniel IM (2003) Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos Sci Technol 63(11):1607–1616

    Article  Google Scholar 

  197. Lv X, Ye F, Cheng L, Fan S, Liu Y (2019) Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology. J Eur Ceram Soc 39(11):3380–3386

    Article  Google Scholar 

  198. Ma RZ, Wu J, Wei BQ, Liang J, Wu DH (1998) Processing and properties of carbon nanotubes–nano-SiC ceramic. J Mater Sci 33(21):5243–5246

    Article  Google Scholar 

  199. Martin-Gallego M, Bernal MM, Hernandez M, Verdejo R, Lopez-Manchado MA (2013) Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. Eur Polymer J 49(6):1347–1353

    Article  Google Scholar 

  200. Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 360(3–4):229–234

    Article  Google Scholar 

  201. May JW (1969) Platinum surface LEED rings. SurSc 17(1):267–270

    Google Scholar 

  202. McClory C, McNally T, Baxendale M, Potschke P, Blau W, Ruether M (2010) Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality. Eur Polymer J 46(5):854–868

    Article  Google Scholar 

  203. McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 1(1):78–85

    Article  Google Scholar 

  204. Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45(3):739–748

    Article  Google Scholar 

  205. Meyyappan M (ed) (2004) Carbon nanotubes: science and applications. CRC Press, Boca Raton

    Google Scholar 

  206. Minh PN, Khoi PH (2009) Carbon nanotube: a novel material for applications. J Phys Conf Ser 187:012002

    Article  Google Scholar 

  207. Mirjalili V, Hubert P (2010) Modelling of the carbon nanotube bridging effect on the toughening of polymers and experimental verification. Compos Sci Technol 70(10):1537–1543

    Article  Google Scholar 

  208. Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yumura M, Hata K (2009) A black body absorber from vertically aligned single-walled carbon nanotubes. Proc Natl Acad Sci 106(15):6044–6047

    Article  Google Scholar 

  209. Mizutani W, Choi N, Uchihashi T, Tokumoto H (2001) Carbon nanotube tip for scanning tunneling microscope. Jpn J Appl Phys 40(6S):4328

    Article  Google Scholar 

  210. Moghanian A, Sharifianjazi F, Abachi P, Sadeghi E, Jafarikhorami H, Sedghi A (2017) Production and properties of Cu/TiO2 nano-composites. J Alloy Compd 698:518–524

    Article  Google Scholar 

  211. Mokashi VV, Qian D, Liu Y (2007) A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics. Compos Sci Technol 67(3–4):530–540

    Article  Google Scholar 

  212. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  213. Morisada Y, Miyamoto Y (2004) SiC-coated carbon nanotubes and their application as reinforcements for cemented carbides. Mater Sci Eng, A 381(1–2):57–61

    Article  Google Scholar 

  214. Morisada Y, Miyamoto Y, Takaura Y, Hirota K, Tamari N (2007) Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes. Int J Refract Metal Hard Mater 25(4):322–327

    Article  Google Scholar 

  215. Morsi K, Esawi AMK, Lanka S, Sayed A, Taher M (2010) Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composite powders. Compos A Appl Sci Manuf 41(2):322–326

    Article  Google Scholar 

  216. Mortazavi B, Baniassadi M, Bardon J, Ahzi S (2013) Modeling of two-phase random composite materials by finite element, Mori-Tanaka and strong contrast methods. Compos B Eng 45(1):1117–1125

    Article  Google Scholar 

  217. Msekh MA, Cuong NH, Zi G, Areias P, Zhuang X, Rabczuk T (2018) Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Eng Fract Mech 188:287–299

    Article  Google Scholar 

  218. Msekh MA, Silani M, Jamshidian M, Areias P, Zhuang X, Zi G, He P, Rabczuk T (2016) Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model. Compos B Eng 93:97–114

    Article  Google Scholar 

  219. Nagy G, Levy M, Scarmozzino R, Osgood RM Jr, Dai H, Smalley RE, McLane GF (1998) Carbon nanotube tipped atomic force microscopy for measurement of <100 nm etch morphology on semiconductors. Appl Phys Lett 73(4):529–531

    Article  Google Scholar 

  220. Negi A, Bhardwaj G, Saini JS, Grover N (2019) Crack growth analysis of carbon nanotube reinforced polymer nanocomposite using extended finite element method. Proc Inst Mech Eng C J Mech Eng Sci 233(5):1750–1770

    Article  Google Scholar 

  221. Negi A, Bhardwaj G, Saini JS, Khanna K, Godara RK (2019) Analysis of CNT reinforced polymer nanocomposite plate in the presence of discontinuities using XFEM. Theor Appl Fract Mech 103:102292

    Article  Google Scholar 

  222. Nielsen LE (1970) Generalized equation for the elastic moduli of composite materials. J Appl Phys 41(11):4626–4627

    Article  Google Scholar 

  223. Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313(1–2):91–97

    Article  Google Scholar 

  224. Novak S, Ivekovicc A (2013) SiC–CNT composite prepared by electrophoretic codeposition and the polymer infiltration and pyrolysis process. J Phys Chem B 117(6):1680–1685

    Article  Google Scholar 

  225. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva I, Dubonos S, Firsov AA (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065):197–200

    Article  Google Scholar 

  226. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  227. O’connell MJ (2018) Carbon nanotubes: properties and applications. CRC Press

    Book  Google Scholar 

  228. Odom TW, Hafner JH, Lieber CM (2001) Scanning probe microscopy studies of carbon nanotubes. In: Carbon nanotubes, Springer, Berlin, pp 173–211

  229. Odom TW, Huang JL, Kim P, Ouyang M, Lieber CM (1998) Scanning tunneling microscopy and spectroscopy studies of single wall carbon nanotubes. J Mater Res 13(9):2380–2388

    Article  Google Scholar 

  230. Park DM, Kim JH, Lee SJ, Yoon GH (2018) Analysis of geometrical characteristics of CNT-Al composite using molecular dynamics and the modified rule of mixture (MROM). J Mech Sci Technol 32(12):5845–5853

    Article  Google Scholar 

  231. Patil RU, Mishra BK, Singh IV (2017) A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials. Int J Mech Sci 122:277–287

    Article  Google Scholar 

  232. Piggott M (2002) Load bearing fibre composites, Springer

  233. Plagianakos TS, Munoz K, Guillamet G, Prentzias V, Quintanas-Corominas A, Jimenez M, Karachalios E (2020) Assessment of CNT-doping and hot-wet storage aging effects on Mode I, II and I/II interlaminar fracture toughness of a UD Graphite/Epoxy material system. Eng Fract Mech 224:106761

    Article  Google Scholar 

  234. Poole CP Jr, Owens FJ (2003) Introduction to nanotechnology. Wiley

    Google Scholar 

  235. Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100

    Article  Google Scholar 

  236. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep 43(3):61–102

    Article  Google Scholar 

  237. Pradhan B, Batabyal SK, Pal AJ (2006) Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Appl Phys Lett 88(9):093106

    Article  Google Scholar 

  238. Quaresimin M, Salviato M, Zappalorto M (2012) Fracture and interlaminar properties of clay-modified epoxies and their glass reinforced laminates. Eng Fract Mech 81:80–93

    Article  Google Scholar 

  239. Quaresimin M, Salviato M, Zappalorto M (2012) Strategies for the assessment of nanocomposite mechanical properties. Compos B Eng 43(5):2290–2297

    Article  Google Scholar 

  240. Radhamani AV, Lau HC, Ramakrishna S (2018) CNT-reinforced metal and steel nanocomposites: a comprehensive assessment of progress and future directions. Compos A Appl Sci Manuf 114:170–187

    Article  Google Scholar 

  241. Rafiee MA (2011) Graphene-based composite materials. Rensselaer Polytechnic Institute, New York

    Google Scholar 

  242. Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu ZZ, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6(2):179–183

    Article  Google Scholar 

  243. Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890

    Article  Google Scholar 

  244. Rahmat M, Hubert P (2011) Carbon nanotube–polymer interactions in nanocomposites: a review. Compos Sci Technol 72(1):72–84

    Article  Google Scholar 

  245. Rao CNR, Satishkumar BC, Govindaraj A, Nath M (2001) Nanotubes. ChemPhysChem 2(2):78–105

    Article  Google Scholar 

  246. Rashad AM (2017) Effect of carbon nanotubes (CNTs) on the properties of traditional cementitious materials. Constr Build Mater 153:81–101

    Article  Google Scholar 

  247. Rowell MW, Topinka MA, McGehee MD, Prall HJ, Dennler G, Sariciftci NS, Hu L, Gruner G (2006) Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett 88(23):233506

    Article  Google Scholar 

  248. Rycerz A, Tworzydlo J, Beenakker CWJ (2007) Valley filter and valley valve in graphene. Nat Phys 3(3):172–175

    Article  Google Scholar 

  249. Sadeghian Z (2009) Large-scale production of multi-walled carbon nanotubes by low-cost spray pyrolysis of hexane. New Carbon Mater 24(1):33–38

    Article  MathSciNet  Google Scholar 

  250. Sadeghpour E, Guo Y, Chua D, Shim VP (2020) A modified Mori-Tanaka approach incorporating filler-matrix interface failure to model graphene/polymer nanocomposites. Int J Mech Sci 180:105699

    Article  Google Scholar 

  251. Saito R, Fujita M, Dresselhaus G, Dresselhaus UM (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60(18):2204–2206

    Article  Google Scholar 

  252. Saito Y, Uemura S, Hamaguchi K (1998) Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn J Appl Phys 37(3B):L346

    Article  Google Scholar 

  253. Sanada K, Takada Y, Yamamoto S, Shindo Y (2008) Analytical and experimental characterization of stiffness and damping in carbon nanocoil reinforced polymer composites. J Solid Mech Mater Eng 2(12):1517–1527

    Article  Google Scholar 

  254. Sano N (2004) Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection. J Phys D Appl Phys 37(8):L17

    Article  Google Scholar 

  255. Sarkar BK (1998) Estimation of composite strength by a modified rule of mixtures incorporating defects. Bull Mater Sci 21(4):329–333

    Article  Google Scholar 

  256. Sarkar K, Sarkar S, Das PK (2016) Spark plasma sintered multiwalled carbon nanotube/silicon carbide composites: densification, microstructure, and tribo-mechanical characterization. J Mater Sci 51(14):6697–6710

    Article  Google Scholar 

  257. Schapery RA (1968) Thermal expansion coefficients of composite materials based on energy principles. J Compos Mater 2(3):380–404

    Article  Google Scholar 

  258. Sela N, Ishai O, Banks-Sills L (1989) The effect of adhesive thickness on interlaminar fracture toughness of interleaved CFRP specimens. Composites 20(3):257–264

    Article  Google Scholar 

  259. Selmi, A., Friebel, C., Doghri, I. and Hassis, H., 2007. Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: A comparative study of several micromechanical models. Composites Science and Technology, 67(10), pp. 2071–2084

    Article  Google Scholar 

  260. Seyhan AT, Tanoglu M, Schulte K (2008) Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Eng Fract Mech 75(18):5151–5162

    Article  Google Scholar 

  261. Sgobba V, Guldi DM (2009) Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics. Chem Soc Rev 38(1):165–184

    Article  Google Scholar 

  262. Shadlou S, Ahmadi-Moghadam B, Taheri F (2014) The effect of strainben-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites. Mater Des 59:439–447

    Article  Google Scholar 

  263. Shen HS (2009) Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos Struct 91(1):9–19

    Article  Google Scholar 

  264. Shen HS, Xiang Y, Lin F (2017) Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments. Comput Methods Appl Mech Eng 319:175–193

    Article  MathSciNet  MATH  Google Scholar 

  265. Shen J, Champagne MF, Gendron R, Guo S (2012) The development of conductive carbon nanotube network in polypropylene-based composites during simultaneous biaxial stretching. Eur Polymer J 48(5):930–939

    Article  Google Scholar 

  266. Shi G, Araby S, Gibson CT, Meng Q, Zhu S, Ma J (2018) Graphene platelets and their polymer composites: fabrication, structure, properties, and applications. Adv Func Mater 28(19):1706705

    Article  Google Scholar 

  267. Shi Z, Lian Y, Zhou X, Gu Z, Zhang Y, Iijima S, Zhou L, Yue KT, Zhang S (1999) Mass-production of single-wall carbon nanotubes by arc discharge method. Carbon 37(9):1449–1453

    Article  Google Scholar 

  268. Shimizu T, Tokumoto H, Akita S, Nakayama Y (2001) Stable atomic imaging of Si (1 1 1)-7×7 surface by scanning tunneling microscope with carbon nanotube tip. Surf Sci 486(3):L455–L460

    Article  Google Scholar 

  269. Shindo Y, Kuronuma Y, Takeda T, Narita F, Fu SY (2012) Electrical resistance change and crack behavior in carbon nanotube/polymer composites under tensile loading. Compos B Eng 43(1):39–43

    Article  Google Scholar 

  270. Shoji S, Suzuki H, Zaccaria RP, Sekkat Z, Kawata S (2008) Optical polarizer made of uniaxially aligned short single-wall carbon nanotubes embedded in a polymer film. Phys Rev B 77(15):153407

    Article  Google Scholar 

  271. Shokrieh MM, Rafiee R (2010) On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos Struct 92(3):647–652

    Article  Google Scholar 

  272. Siddiqui MU, Arif AFM (2016) Generalized effective medium theory for particulate nanocomposite materials. Materials 9(8):694

    Article  Google Scholar 

  273. Singh C, Shaffer MS, Windle AH (2003) Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon 41(2):359–368

    Article  Google Scholar 

  274. Singh IV, Mishra BK, Bhattacharya S, Patil RU (2012) The numerical simulation of fatigue crack growth using extended finite element method. Int J Fatigue 36(1):109–119

    Article  Google Scholar 

  275. Singh SK, Singh IV (2020) Analysis of cracked functionally graded piezoelectric material using XIGA. Eng Fract Mech 230:107015

    Article  Google Scholar 

  276. Singh SK, Singh IV, Mishra BK, Bhardwaj G (2019) Analysis of cracked functionally graded material plates using XIGA based on generalized higher-order shear deformation theory. Compos Struct 225:111038

    Article  Google Scholar 

  277. Singla D, Amulya K, Murtaza Q (2015) CNT reinforced aluminium matrix composite-a review. Mater Today Proc 2(4–5):2886–2895

    Article  Google Scholar 

  278. Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State Mater Sci 26(3):145–249

    Article  Google Scholar 

  279. Slepyan GY, Shuba MV, Maksimenko SA, Lakhtakia A (2006) Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas. Phys Rev B 73(19):195416

    Article  Google Scholar 

  280. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150

    Article  Google Scholar 

  281. Song HJ, Zhang ZZ, Men XH (2007) Surface-modified carbon nanotubes and the effect of their addition on the tribological behavior of a polyurethane coating. Eur Polymer J 43(10):4092–4102

    Article  Google Scholar 

  282. Song M, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588

    Article  Google Scholar 

  283. Soni A, Grover N, Bhardwaj G, Singh BN (2020) Non-polynomial framework for static analysis of functionally graded carbon nano-tube reinforced plates. Compos Struct 233:111569

    Article  Google Scholar 

  284. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  Google Scholar 

  285. Stynoski P, Mondal P, Marsh C (2015) Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar. Cement Concr Compos 55:232–240

    Article  Google Scholar 

  286. Subramaniam K, Das A, Steinhauser D, Kluppel M, Heinrich G (2011) Effect of ionic liquid on dielectric, mechanical and dynamic mechanical properties of multi-walled carbon nanotubes/polychloroprene rubber composites. Eur Polymer J 47(12):2234–2243

    Article  Google Scholar 

  287. Suhr J, Zhang W, Ajayan PM, Koratkar NA (2006) Temperature-activated interfacial friction damping in carbon nanotube polymer composites. Nano Lett 6(2):219–223

    Article  Google Scholar 

  288. Sun L, Gibson RF, Gordaninejad F (2011) Multiscale analysis of stiffness and fracture of nanoparticle-reinforced composites using micromechanics and global–local finite element models. Eng Fract Mech 78(15):2645–2662

    Article  Google Scholar 

  289. Sun R, Li L, Feng C, Kitipornchai S, Yang J (2018) Tensile behavior of polymer nanocomposite reinforced with graphene containing defects. Eur Polymer J 98:475–482

    Article  Google Scholar 

  290. Sun R, Li L, Feng C, Kitipornchai S, Yang J (2019) Tensile property enhancement of defective graphene/epoxy nanocomposite by hydrogen functionalization. Compos Struct 224:111079

    Article  Google Scholar 

  291. Sun R, Li L, Zhao S, Feng C, Kitipornchai S, Yang J (2019) Temperature-dependent mechanical properties of defective graphene reinforced polymer nanocomposite. Mech Adv Mater Struct 28:1–10

    Google Scholar 

  292. Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko DM, Ferrari AC (2010) Graphene mode-locked ultrafast laser. ACS Nano 4(2):803–810

    Article  Google Scholar 

  293. Suquet PM (1987) Elements of homogenization theory for inelastic solid mechanics Homogenization techniques for composite media. Springer, Berlin

    MATH  Google Scholar 

  294. Surappa MK (2003) Aluminium matrix composites: challenges and opportunities. Sadhana 28(1–2):319–334

    Article  Google Scholar 

  295. Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley

  296. Tajzad I, Ghasali E (2020) Production methods of CNT-reinforced Al matrix composites: a review. J Compos Compd 2(1):1–9

    Google Scholar 

  297. Takeda T, Shindo Y, Narita F, Mito Y (2009) Tensile characterization of carbon nanotube-reinforced polymer composites at cryogenic temperatures: experiments and multiscale simulations. Mater Trans 50(3):436–445

    Article  Google Scholar 

  298. Tanaike O, Futaba DN, Hata K, Hatori H (2009) Supercapacitors using pure single-walled carbon nanotubes. Carbon Lett 10(2):90–93

    Article  Google Scholar 

  299. Tandon GP, Weng GJ (1984) The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym Compos 5(4):327–333

    Article  Google Scholar 

  300. Tang LC, Zhang H, Han JH, Wu XP, Zhang Z (2011) Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Compos Sci Technol 72(1):7–13

    Article  Google Scholar 

  301. Tarannum F, Muthaiah R, Annam RS, Gu T, Garg J (2020) Effect of alignment on enhancement of thermal conductivity of polyethylene-graphene nanocomposites and comparison with effective medium theory. Nanomaterials 10(7):1291

    Article  Google Scholar 

  302. Taya M (2005) Electronic composites: modeling, characterization, processing, and MEMS applications. Cambridge University Press

    Book  Google Scholar 

  303. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487

    Article  Google Scholar 

  304. Thostenson ET, Chou TW (2003) On the elastic properties of carbon nanotube-based composites: modelling and characterization. J Phys D Appl Phys 36(5):573

    Article  Google Scholar 

  305. Thostenson ET, Chou TW (2006) Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44(14):3022–3029

    Article  Google Scholar 

  306. Thostenson ET, Karandikar PG, Chou TW (2005) Fabrication and characterization of reaction bonded silicon carbide/carbon nanotube composites. J Phys D Appl Phys 38(21):3962

    Article  Google Scholar 

  307. Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65(3–4):491–516

    Article  Google Scholar 

  308. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  Google Scholar 

  309. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Rep 53(3–4):73–197

    Article  Google Scholar 

  310. Tomanek D, Jorio A, Dresselhaus MS, Dresselhaus G (2007) Introduction to the important and exciting aspects of carbon-nanotube science and technology. In: Carbon nanotubes, Springer, Berlin, pp 1–12

  311. Torabi AR, Rahimi AS, Ayatollahi MR (2019) Elastic-plastic fracture assessment of CNT-reinforced epoxy/nanocomposite specimens weakened by U-shaped notches under mixed mode loading. Compos Part B Eng 176:107114

    Article  Google Scholar 

  312. Tsai SW (1988) Composites design. In: Think composites, Dayton, Ohio, p 583

  313. Tsai YI, Bosze EJ, Barjasteh E, Nutt SR (2009) Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites. Compos Sci Technol 69(3–4):432–437

    Article  Google Scholar 

  314. Tsantzalis S, Karapappas P, Vavouliotis A, Tsotra P, Kostopoulos V, Tanimoto T, Friedrich K (2007) On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles. Compos A Appl Sci Manuf 38(4):1159–1162

    Article  Google Scholar 

  315. Tserpes KI, Silvestre N (eds) (2014) Modeling of carbon nanotubes, graphene and their composites. Springer, Berlin

    Google Scholar 

  316. Van Bommel AJ, Crombeen JE, Van Tooren A (1975) LEED and Auger electron observations of the SiC (0001) surface. Surf Sci 48(2):463–472

    Article  Google Scholar 

  317. Van Noorden R (2011) The trials of new carbon. Nature 469:14–16

    Article  Google Scholar 

  318. Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, Ghasemi-Nejhad MN (2006) Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat Mater 5(6):457–462

    Article  Google Scholar 

  319. Venema LC, Meunier V, Lambin P, Dekker C (2000) Atomic structure of carbon nanotubes from scanning tunneling microscopy. Phys Rev B 61(4):2991

    Article  Google Scholar 

  320. Vezenov DV, Noy A, Rozsnyai LF, Lieber CM (1997) Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy. J Am Chem Soc 119(8):2006–2015

    Article  Google Scholar 

  321. Vigolo B, Cojocaru CS, Faerber J, Arabski J, Gangloff L, Legagneux P, Lezec H, Le Normand F (2008) Localized CVD growth of oriented and individual carbon nanotubes from nanoscaled dots prepared by lithographic sequences. Nanotechnology 19(13):135601

    Article  Google Scholar 

  322. Wagner HD, Ajayan PM, Schulte K (2013) Nanocomposite toughness from a pull-out mechanism. Compos Sci Technol 83:27–31

    Article  Google Scholar 

  323. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review—electroanalysis. Int J Devot Fundam Pract Asp Electroanal 17(1):7–14

    Google Scholar 

  324. Wang MS, Kaplan-Ashiri I, Wei XL, Rosentsveig R, Wagner HD, Tenne R, Peng LM (2008) In situ TEM measurements of the mechanical properties and behavior of WS 2 nanotubes. Nano Res 1(1):22

    Article  Google Scholar 

  325. Wang XJ, Flicker JD, Lee BJ, Ready WJ, Zhang ZM (2009) Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes. Nanotechnology 20(21):215704

    Article  Google Scholar 

  326. Wang Y, Feng C, Santiuste C, Zhao Z, Yang J (2019) Buckling and postbuckling of dielectric composite beam reinforced with graphene platelets (GPLs). Aerosp Sci Technol 91:208–218

    Article  Google Scholar 

  327. Wang Y, Feng C, Wang X, Zhao Z, Romero CS, Yang J (2019) Nonlinear free vibration of graphene platelets (GPLs)/polymer dielectric beam. Smart Mater Struct 28(5):055013

    Article  Google Scholar 

  328. Wang Y, Feng C, Wang X, Zhao Z, Romero CS, Dong Y, Yang J (2019) Nonlinear static and dynamic responses of graphene platelets reinforced composite beam with dielectric permittivity. Appl Math Model 71:298–315

    Article  MathSciNet  MATH  Google Scholar 

  329. Wang Y, Kempa K, Kimball B, Carlson JB, Benham G, Li WZ, Kempa T, Rybczynski J, Herczynski A, Ren ZF (2004) Receiving and transmitting light-like radio waves: antenna effect in arrays of aligned carbon nanotubes. Appl Phys Lett 85(13):2607–2609

    Article  Google Scholar 

  330. Wei Y, Weng D, Yang Y, Zhang X, Jiang K, Liu L, Fan S (2006) Efficient fabrication of field electron emitters from the multiwalled carbon nanotube yarns. Appl Phys Lett 89(6):063101

    Article  Google Scholar 

  331. Wetzel B, Rosso P, Haupert F, Friedrich K (2006) Epoxy nanocomposites–fracture and toughening mechanisms. Eng Fract Mech 73(16):2375–2398

    Article  Google Scholar 

  332. Williams JG (1984) Fracture mechanics of polymers, Horwood

  333. Williams JG (2010) Particle toughening of polymers by plastic void growth. Compos Sci Technol 70(6):885–891

    Article  Google Scholar 

  334. Wong SS, Harper JD, Lansbury PT, Lieber CM (1998) Carbon nanotube tips: high-resolution probes for imaging biological systems. J Am Chem Soc 120(3):603–604

    Article  Google Scholar 

  335. Wu J, Zhang H, Zhang Y, Wang X (2012) Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering. Mater Des 41:344–348

    Article  Google Scholar 

  336. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, Bianco A (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed 44(39):6358–6362

    Article  Google Scholar 

  337. Wu YP, Jia QX, Yu DS, Zhang LQ (2004) Modeling Young’s modulus of rubber–clay nanocomposites using composite theories. Polym Test 23(8):903–909

    Article  Google Scholar 

  338. Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276

    Article  Google Scholar 

  339. Xiao L, Chen Z, Feng C, Liu L, Bai ZQ, Wang Y, Qian L, Zhang Y, Li Q, Jiang K, Fan S (2008) Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett 8(12):4539–4545

    Article  Google Scholar 

  340. Xiong QL, Meguid SA (2015) Atomistic investigation of the interfacial mechanical characteristics of carbon nanotube reinforced epoxy composite. Eur Polymer J 69:1–15

    Article  Google Scholar 

  341. Xu Y, Cheng L, Zhang L (1999) Carbon/silicon carbide composites prepared by chemical vapor infiltration combined with silicon melt infiltration. Carbon 37(8):1179–1187

    Article  Google Scholar 

  342. Yadav A, Godara RK, Bhardwaj G (2020) A review on XIGA method for computational fracture mechanics applications. Eng Fract Mech 230:107001

    Article  Google Scholar 

  343. Yaghobizadeh O, Sedghi A, Baharvandi HR (2017) Introduction of nano-laminate Ti3SiC2 and SiC phases into Cf-C composite by liquid silicon infiltration method. Metall Mater Eng 23(1):21–30

    Article  Google Scholar 

  344. Yakobson BI, Smalley RE (1997) Fullerene nanotubes: C 1,000,000 and beyond: Some unusual new molecules—long, hollow fibers with tantalizing electronic and mechanical properties—have joined diamonds and graphite in the carbon family. Am Sci 85(4):324–337

    Google Scholar 

  345. Yamashita S, Inoue Y, Maruyama S, Murakami Y, Yaguchi H, Jablonski M, Set SY (2004) Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Opt Lett 29(14):1581–1583

    Article  Google Scholar 

  346. Yang J, Wu H, Kitipornchai S (2017) Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos Struct 161:111–118

    Article  Google Scholar 

  347. Yang X, He Y, Zeng G, Chen X, Shi H, Qing D, Li F, Chen Q (2017) Bio-inspired method for preparation of multiwall carbon nanotubes decorated superhydrophilic poly (vinylidene fluoride) membrane for oil/water emulsion separation. Chem Eng J 321:245–256

    Article  Google Scholar 

  348. Yang ZP, Ci L, Bur JA, Lin SY, Ajayan PM (2008) Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett 8(2):446–451

    Article  Google Scholar 

  349. Yas MH, Samadi N (2012) Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int J Press Vessels Pip 98:119–128

    Article  Google Scholar 

  350. Yellampalli S (ed) (2011) Carbon nanotubes: synthesis, characterization, applications. BoD–Books on Demand

  351. Yu MF, Dyer MJ, Ruoff RS (2001) Structure and mechanical flexibility of carbon nanotube ribbons: an atomic-force microscopy study. J Appl Phys 89(8):4554–4557

    Article  Google Scholar 

  352. Zaoui A (1997) Structural morphology and constitutive behaviour of microheterogeneous materials. In: Continuum micromechanics, Springer, Vienna, pp 291–347

  353. Zappalorto M, Salviato M, Quaresimin M (2012) A multiscale model to describe nanocomposite fracture toughness enhancement by the plastic yielding of nanovoids. Compos Sci Technol 72(14):1683–1691

    Article  Google Scholar 

  354. Zappalorto M, Salviato M, Quaresimin M (2013) Mixed mode (I+ II) fracture toughness of polymer nanoclay nanocomposites. Eng Fract Mech 111:50–64

    Article  Google Scholar 

  355. Zare Y (2016) Development of Halpin-Tsai model for polymer nanocomposites assuming interphase properties and nanofiller size. Polym Test 51:69–73

    Article  Google Scholar 

  356. Zare Y, Rhee KY, Park SJ (2019) A developed equation for electrical conductivity of polymer carbon nanotubes (CNT) nanocomposites based on Halpin-Tsai model. Results Phys 14:102406

    Article  Google Scholar 

  357. Zeinedini A, Shokrieh MM, Ebrahimi A (2018) The effect of agglomeration on the fracture toughness of CNTs-reinforced nanocomposites. Theoret Appl Fract Mech 94:84–94

    Article  Google Scholar 

  358. Zhang G, Qi P, Wang X, Lu Y, Li X, Tu R, Dai H (2006) Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314(5801):974–977

    Article  Google Scholar 

  359. Zhang H, Liu Y, Kuwata M, Bilotti E, Peijs T (2015) Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Compos A Appl Sci Manuf 70:102–110

    Article  Google Scholar 

  360. Zhang J, Boyd A, Tselev A, Paranjape M, Barbara P (2006) Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors. Appl Phys Lett 88(12):123112

    Article  Google Scholar 

  361. Zhang L, Feng C, Chen Z, Liu L, Jiang K, Li Q, Fan S (2008) Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials. Nano Lett 8(8):2564–2569

    Article  Google Scholar 

  362. Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204

    Article  Google Scholar 

  363. Zhao GL, Bagayoko D, Yang L (2006) Optical properties of aligned carbon nanotube mats for photonic applications. J Appl Phys 99(11):114311

    Article  Google Scholar 

  364. Zhao S, Zhao Z, Yang Z, Ke L, Kitipornchai S, Yang J (2020) Functionally graded graphene reinforced composite structures: a review. Eng Struct 210:110339

    Article  Google Scholar 

  365. Zheng QS, Du DX (2001) An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. J Mech Phys Solids 49(11):2765–2788

    Article  MATH  Google Scholar 

  366. Zhou C, Kong J, Dai H (2000) Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters. Appl Phys Lett 76(12):1597–1599

    Article  Google Scholar 

  367. Zhu F, Park C, Jin Yun G (2019) An extended Mori-Tanaka micromechanics model for wavy CNT nanocomposites with interface damage. In: Mechanics of advanced materials and structures, pp 1–13

  368. Zhu P, Lei ZX, Liew KM (2012) Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos Struct 94(4):1450–1460

    Article  Google Scholar 

  369. Zhu R, Pan E, Roy AK (2007) Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites. Mater Sci Eng A 447(1–2):51–57

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi for providing financial support (Early Career Research Award) to this work through Grant No: ECR/2018/00592.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bhardwaj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A., Godara, R.K., Bhardwaj, G. et al. A Review on Fracture Analysis of CNT/Graphene Reinforced Composites for Structural Applications. Arch Computat Methods Eng 29, 545–582 (2022). https://doi.org/10.1007/s11831-021-09650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09650-2

Navigation