Skip to main content
Log in

Physical and mechanical properties of SiC-CNTs nano-composites produced by a rapid microwave process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, synthesis of SiC-CNTs nano-composites at low temperature by a microwave process is reported. The physical and mechanical properties of SiC based nano-composites reinforced with different amounts of carbon nanotubes (CNTs) (0, 0.5, 2, 5 and 10 vol%) were studied. The characterization of the nano-composites was carried out by means of FE-SEM, XRD, hardness, bending strength, electrical and thermal conductivity tests. The fracture toughness was tested using a Palmquist method. Results show that the hardness of nano-composite sample in 0.5 vol% of CNTs increases of about 24% compared to pure SiC sample. Also three-point bending strength and fracture toughness of the SiC-CNTs nano-composites using 0.5 vol% of CNTs increase of about 10% compared to the pure SiC sample which was produced under the same process. The electrical conductivity of the SiC-CNTs nano-composites had a tendency to decline with increasing volume fraction of the reinforcing material due to the CNT clusters and larger grain-boundary per unit volume, resulting in lower carrier mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.R. Naslain, SiC-matrix composites: nonbrittle ceramics for thermo-structural application. Int. J. Appl. Ceram. Technol. 2(2), 75–84 (2005)

    Article  Google Scholar 

  2. W.-J. Kim, D. Kim, J.Y. Park, Fabrication and material issues for the application of SiC composites to LWR fuel cladding. Nuclear Eng. Technol. 45(4), 565–572 (2013)

    Article  Google Scholar 

  3. J. Fan, P.K.-H. Chu, Silicon Carbide Nanostructures: Fabrication, Structure. (Springer, New York, 2014)

    Book  Google Scholar 

  4. B. Wang, Y. Wang, Y. Lei, N. Wu, Y. Gou, C. Han, D. Fang, Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. J. Mater. Chem. A 2(48), 20873–20881 (2014)

    Article  Google Scholar 

  5. R. Wu, K. Zhou, C.Y. Yue, J. Wei, Y. Pan, Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 72, 1–60 (2015)

    Article  Google Scholar 

  6. S. Ghadami, H. Baharvandi, F. Ghadami, Influence of the vol% SiC on properties of pressureless Al2 O3/SiC nanocomposites. J. Compos. Mater. 50(10), 1367–1375 (2016) 

    Article  Google Scholar 

  7. K.A. Terrani, J. Kiggans, C.M. Silva, C. Shih, Y. Katoh, L.L. Snead, Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form. J. Nucl. Mater. 457, 9–17 (2015)

    Article  Google Scholar 

  8. Y. Liu, F. Luo, J. Su, W. Zhou, D. Zhu, Z. Li, Enhanced mechanical, dielectric and microwave absorption properties of cordierite based ceramics by adding Ti3SiC2 powders. J. Alloys Compd. 619, 854–860 (2015)

    Article  Google Scholar 

  9. A. Agarwal, S.R. Bakshi, D. Lahiri, Carbon Nanotubes: Reinforced Metal Matrix Composites. (CRC Press, Boca Raton, 2016)

    Google Scholar 

  10. H. Sun, X. You, J. Deng, X. Chen, Z. Yang, J. Ren, H. Peng, Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv. Mater. 26(18), 2868–2873 (2014)

    Article  Google Scholar 

  11. Y. Yan, J. Miao, Z. Yang, F.-X. Xiao, H.B. Yang, B. Liu, Y. Yang, Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 44(10), 3295–3346 (2015)

    Article  Google Scholar 

  12. Q. Wang, B. Arash, A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. Comput. Mater. Sci. 82, 350–360 (2014)

    Article  Google Scholar 

  13. S. Zhao, X. Zhou, J. Yu, P. Mummery, SiC/SiC composite fabricated with carbon nanotube interface layer and a novel precursor LPVCS. Fusion Eng. Des. 89(2), 131–136 (2014)

    Article  Google Scholar 

  14. Q. Li, X. Yin, L. Zhang, L. Cheng, Effects of SiC fibers on microwave absorption and electromagnetic interference shielding properties of SiC f/SiCN composites. Ceram. Int. 42(16), 19237–19244 (2016)  

    Article  Google Scholar 

  15. M. Bhattacharya, T. Basak, Susceptor-assisted enhanced microwave processing of ceramics: a review. Crit. Rev. Solid State Mater. Sci. 1–37 (2016). doi: 10.1080/10408436.2016.1192987

  16. W. Duan, X. Yin, Q. Li, X. Liu, L. Cheng, L. Zhang, Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic. J. Eur. Ceram. Soc. 34(2), 257–266 (2014)

    Article  Google Scholar 

  17. M. Li, X. Yin, G. Zheng, M. Chen, M. Tao, L. Cheng, L. Zhang, High-temperature dielectric and microwave absorption properties of Si3 N4–SiC/SiO2 composite ceramics. J. Mater. Sci. 50(3), 1478–1487 (2015)

    Article  Google Scholar 

  18. A.D. Akinwekomi, W.-C. Law, C.-Y. Tang, L. Chen, C.-P. Tsui, Rapid microwave sintering of carbon nanotube-filled AZ61 magnesium alloy composites. Compos. Part B Eng. 93, 302–309 (2016)

    Article  Google Scholar 

  19. R. Wu, Z. Yang, M. Fu, K. Zhou, In situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties. J. Alloys Compd. 687, 833–838 (2016)

    Article  Google Scholar 

  20. H. Mei, H. Wang, N. Zhang, H. Ding, Y. Wang, Q. Bai, Carbon nanotubes introduced in different phases of C/PyC/SiC composites: effect on microstructure and properties of the materials. Compos. Sci. Technol. 115, 28–33 (2015)

    Article  Google Scholar 

  21. C.-H. Peng, P.S. Chen, C.-C. Chang, High-temperature microwave bilayer absorber based on lithium aluminum silicate/lithium aluminum silicate-SiC composite. Ceram. Int. 40(1), 47–55 (2014)  

  22. S. Han, R. Rosa, V. Casalegno, M. Salvo, P. Veronesi, M. Ferraris, C. Leonelli, Microwave assisted self-propagating high-temperature synthesis for joining SiC ceramics and SiC/SiC composites by Ni–Al system. Appl. Mech. Mater. 727–728, 213–218 (2014)

  23. J. Xu, F. Chen, F. Tan, In situ preparation of SiC–MoSi2 composite by microwave reaction sintering. Ceram. Int. 38(8), 6895–6898 (2012)

    Article  Google Scholar 

  24. F. Chen, J. Xu, Z. Hou, In situ pressureless sintering of SiC/MoSi2 composites. Ceram. Int. 38(4), 2767–2772 (2012)

    Article  Google Scholar 

  25. I. Ganesh, R. Johnson, G. Rao, Y. Mahajan, S. Madavendra, B. Reddy, Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder. Ceram. Int. 31(1), 67–74 (2005)

    Article  Google Scholar 

  26. M. Rajabi, M.M. Khodai, N. Askari, Microwave-assisted sintering of Al–ZrO2 nano-composites, J. Mater. Sci. Mater. Electron. 25, 4577–4584 (2014)

    Article  Google Scholar 

  27. Z. Asadipanah, M. Rajabi, Production of Al–ZrB2 nano-composites by microwave sintering process. J. Mater. Sci. Mater. Electron. 26(no. 8), 6148–6156 (2015)

    Article  Google Scholar 

  28. A. yarahmadi, M.T. Noghani, M. Rajabi, Effect of carbon nanotube (CNT) content and double-pressing double-sintering (DPDS) method on the tensile strength and bending strength behavior of CNT-reinforced aluminum composites. J. Mater. Res. 31(24), 3860–3868 (2016)

  29. S. Palmquist, Energy causing cracks at corners of vickers indentations as measure of toughness of hard materials. Archiv fuer das Eisenhuettenwes 33, 629–634 (1962)

    Article  Google Scholar 

  30. V.M. Candelario, R. Moreno, Z. Shen, A.L. Ortiz, Aqueous colloidal processing of nano-SiC and its nano-Y3 Al5 O12 liquid-phase sintering additives with carbon nanotubes. J. Eur. Ceram. Soc. 35(13), 3363–3368 (2015)

    Article  Google Scholar 

  31. T.A. Carlson, Processing, Microstructure, and Properties of Carbon Nanotube and Silicon Carbide Composites. (University of Illinois, Champaign, 2013)

    Google Scholar 

  32. N. Song, H. Liu, J. Fang, Fabrication and mechanical properties of multi-walled carbon nanotube reinforced reaction bonded silicon carbide composites. Ceram. Int. 42(1), 351–356 (2016)

    Article  Google Scholar 

  33. B. Yazdani, Y. Xia, I. Ahmad, Y. Zhu, Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J. Eur. Ceram. Soc. 35(1), 179–186 (2015)

    Article  Google Scholar 

  34. K. Ahmad, W. Pan, Microstructure-toughening relation in alumina based multiwall carbon nanotube ceramic composites. J. Eur. Ceram. Soc. 35(2), 663–671 (2015)

    Article  Google Scholar 

  35. M.S. Asl, I. Farahbakhsh, B. Nayebi, Characteristics of multi-walled carbon nanotube toughened ZrB2–SiC ceramic composite prepared by hot pressing. Ceram. Int. 42(1), 1950–1958 (2016)

    Article  Google Scholar 

  36. S. Li, Y. Zhang, J. Han, Y. Zhou, Effect of carbon particle and carbon fiber on the microstructure and mechanical properties of short fiber reinforced reaction bonded silicon carbide composite. J. Eur. Ceram. Soc. 33(4), 887–896 (2013)

    Article  Google Scholar 

  37. S. Pasupuleti, R. Peddetti, S. Santhanam, K.-P. Jen, Z.N. Wing, M. Hecht, J.P. Halloran, Toughening behavior in a carbon nanotube reinforced silicon nitride composite. Mater. Sci. Eng. A 491(1), 224–229 (2008)

    Article  Google Scholar 

  38. J. Lee, S. Lee, K. Cho, J. Byun, D. Bae, Characterization of SiC f/SiC and CNT/SiC composite materials produced by liquid phase sintering. J. Nucl. Mater. 417(1), 371–374 (2011)

    Article  Google Scholar 

  39. B. Román-Manso, E. Domingues, F.M. Figueiredo, M. Belmonte, P. Miranzo, Enhanced electrical conductivity of silicon carbide ceramics by addition of graphene nanoplatelets. J. Eur. Ceram. Soc. 35(10), 2723–2731 (2015)

    Article  Google Scholar 

  40. Y. Pan, P. Zhu, X. Wang, S. Li, Preparation and characterization of one-dimensional SiC-CNT composite nanotubes. Diamond Relat. Mater. 20(3), 310–313 (2011)

    Article  Google Scholar 

  41. Z. Hu, S. Dong, J. Hu, B. Lu, Fabrication and properties analysis of C f-CNT/SiC composite. Ceram. Int. 39(2), 2147–2152 (2013)

    Article  Google Scholar 

  42. K. Rajkumar, S. Aravindan, Tribological studies on microwave sintered copper–carbon nanotube composites. Wear 270(9), 613–621 (2011)

    Article  Google Scholar 

  43. Y. Wang, Z. Iqbal, S. Mitra, Rapid, low temperature microwave synthesis of novel carbon nanotube–silicon carbide composite. Carbon 44(13), 2804–2808 (2006)

    Article  Google Scholar 

  44. S. Bi, L. Ma, B. Mei, Q. Tian, C. Liu, C. Zhong, Y. Xiao, Silicon carbide/carbon nanotube heterostructures: controllable synthesis, dielectric properties and microwave absorption. Adv. Powder Technol. 25(4), 1273–1279 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank INSF of Iran Contract Number of 94/sad/42699 on 9/11/2015 for complete financial support provided for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rajabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiaboutalebi, M., Rajabi, M. & Khanali, O. Physical and mechanical properties of SiC-CNTs nano-composites produced by a rapid microwave process. J Mater Sci: Mater Electron 28, 8986–8992 (2017). https://doi.org/10.1007/s10854-017-6629-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6629-8

Keywords

Navigation