Skip to main content
Log in

Machine learning application in Glioma classification: review and comparison analysis

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper simply presents a state of the art survey among the machine learning based approaches for the Glioma classification. As Glioma classification is a very challenging task in the field of medical science and this task is well addressed and taken by the fraternity of machine learning experts, who are working day and night to devise automated approaches that can automate this whole process of Glioma accurate classification from the various medical imaging modalities like Magnetic resonance imaging (MRI), Computed tomography (CT) etc. Although present machine learning techniques offers an opportunity to come up with a highly accurate and automated Glioma classification approach, by performing fusion among the various medical imaging modalities as well as utilizing the various features derived from the multi-modality medical imaging data. This paper also proposed an efficient and accurate automated approach of Glioma classification for the comparison analysis. This proposed approach is based on the use of hybrid ensemble learning model and hybrid feature extraction method, which relies on the Discrete wavelet Decomposition (DWD), Central pixel Neighbourhood Binary pattern (CNBP) and GLRLM (Gray level run length Matrix) methods in order to classify the Glioma (type of mostly diagnosed brain tumors) into Low grade Glioma and High grade Glioma from the fused MRI sequences. Improved eXtreme Gradient Boosting classifier is the hybrid ensemble learning model, which is used in this paper for the first time along with the proposed hybrid texture feature extraction method. Further this proposed approach is compared with the already existing state of the art approaches, which are based on the various machine learning classifiers like Support vector machine (SVM), K-Nearest neighbor (KNN), Naïve Bayes (NB) etc. and conventional feature extraction methods in order to present a comprehensive and practical comparison study. The proposed approach is evaluated on the balanced large size local dataset consisting of MRI images of low and high grade Glioma collected from the various MRI centers located in Madhya Pradesh, India as well as on the popular global datasets like, BRATS 2013 and BRATS 2015 with various MRI fusion combinations (T1 + T1C + T2 + Flair, T1 + T1C + T2, T1 + T1C + Flair, T1C + T2 + Flair etc.). The proposed approach employing Improved eXtreme Gradient Boosting ensemble model offers highest accuracy of above 90% on the local dataset with the fusion of T1C + T2 + Flair MRI sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wiestler B et al (2016) Multiparametric MRI-based differentiation of WHO grade II/III glioma and WHO grade IV glioblastoma. Sci Rep 6:35142. https://doi.org/10.1038/srep35142

    Article  Google Scholar 

  2. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS (2014) The epidemiology of glioma in adults: a “state of the science review.” Neuro Oncol. https://doi.org/10.1093/neuonc/nou087

    Article  Google Scholar 

  3. OncoLink Team (2018) All about Pediatric Gliomas (Low and High Grade). https://www.oncolink.org/cancers/braintumors/all-about-pediatric-gliomas-low-and-highgrade. Accessed on 26 August 2019.

  4. Ain Q, Jaffar MA, Choi TS (2014) Fuzzy anisotropic diffusion based segmentation and texture based ensemble classification of brain tumor. Appl Soft Comput 21:330–340. https://doi.org/10.1016/j.asoc.2014.03.019

    Article  Google Scholar 

  5. Technical report (2015) Cancer Facts & Figures 2015. American Cancer Society Georgia. https://www.cancer.org›dam›research/. Accessed 26 August 2019.

  6. Wang H, Fei B (2009) A modified fuzzy c-means classification method using a multi-scale diffusion filtering scheme. Med Image Anal J 13:193–202. https://doi.org/10.1016/j.media.2008.06.014

    Article  Google Scholar 

  7. Khayati R, Vafadust M, Towhidkhah F, Nabavi SM (2008) A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images. Comput Med Imaging Graph 32:124–133. https://doi.org/10.1016/j.compmedimag.2007.10.003

    Article  Google Scholar 

  8. Ray N, Saha BN, Brown M (2007) Locating Brain Tumors from MR Imagery Using Symmetry. Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, California November 2007. https://doi.org/10.1109/ACSSC.2007.4487200.

  9. Boudraa AO, Dehak SMR, Zhu YMC et al (2000) Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering. Comput Biol Med 30:23–40. https://doi.org/10.1016/s0010-4825(99)00019-0

    Article  Google Scholar 

  10. Leemput KV, Maes F, Vandermeulen D et al (2001) Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans Med Imaging 20:677–688. https://doi.org/10.1109/42.938237

    Article  Google Scholar 

  11. Wang Z, Hu Q, Loe K, Aziz A, Nowinski WL (2004) Rapid and automatic detection of brain tumors in MR images. Proce SPIE Med Imaging, San Diego. https://doi.org/10.1117/12.538035

    Article  Google Scholar 

  12. Yamamoto D, Arimura H, Kakeda S, Magome T, Yamashita Y, Toyofuku F et al (2010) Computer-aided detection of multiple sclerosis lesions in brain magnetic resonance images: False positive reduction scheme consisted of rule-based level set method, and support vector machine. Comput Med Imaging Graph 34:404–413. https://doi.org/10.1016/j.compmedimag.2010.02.001

    Article  Google Scholar 

  13. El-Dahshan EA, Hosny T, Salem AM (2010) Hybrid intelligent techniques for MRI brain images classification. Digital Signal Process 20:433–441. https://doi.org/10.1016/j.dsp.2009.07.002

    Article  Google Scholar 

  14. Sharma M, Mukherjee S (2013) Fuzzy C-means and snake model for segmenting astrocytoma—a type of brain tumor. Int J Adv Eng Sci 3(3):30–35

    Google Scholar 

  15. Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 31(8):1426–1438

    Article  Google Scholar 

  16. Arakeri MP, Reddy GRM (2015) Computer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance images. Signal Image Video Process 9:409–425. https://doi.org/10.1007/s11760-013-0456-z

    Article  Google Scholar 

  17. Sengupta A, Ramaniharan AK, Gupta RK, Agarwak S, Singh A (2019) Glioma grading using a machine-learning framework based on optimized features obtained from T1 perfusion MRI and volumes of tumor components. J Magn Reson Imaging 50:1295–1306. https://doi.org/10.1002/jmri.26704

    Article  Google Scholar 

  18. Gupta N, Khanna P (2013) A fast and efficient computer aided diagnostic system to detect tumor from brain magnetic resonance imaging. Int J Imaging Syst Tech 25(2):123–130. https://doi.org/10.1002/ima.22128

    Article  Google Scholar 

  19. El-Dahshan EA, Mohsen HM, Revett K, Salem AM (2014) Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 41(11):5526–5545. https://doi.org/10.1016/j.eswa.2014.01.021

    Article  Google Scholar 

  20. Vishnuvarthanan G, Rajasekaran MP, Subbaraj P, Vishnuvarthanan A (2016) An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images. Appl Soft Comput 38:190–212. https://doi.org/10.1016/j.asoc.2015.09.016

    Article  Google Scholar 

  21. Subashini MM, Sahoo SK, Sunil V, Easwaran S (2016) A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques. Expert Syst Appl 43:186–196. https://doi.org/10.1016/j.eswa.2015.08.036

    Article  Google Scholar 

  22. Zhan T, Feng P et al (2017) an automatic Glioma grading method based on multi-feature extraction and fusion. Technol Health Care J 25:377–385. https://doi.org/10.3233/THC-171341

    Article  Google Scholar 

  23. Ferris J, Chang PD, Chow DS (2020) Radiomics and Machine Learning. In: Pope W (ed) Glioma Imaging. Springer, New York, pp 241–249

    Chapter  Google Scholar 

  24. Menze BH et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  25. Kistler M, Bonaretti S, Pfahrer M et al (2013) The virtual skeleton database: an open access repository for biomedical research and collaboration. J Med Internet Res 15(11):e245. https://doi.org/10.2196/jmir.2930

    Article  Google Scholar 

  26. Sajjad M, Khan S, Muhammad K, Wu W, Ullah A, Baik SW (2019) Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J Comput Sci 30:174–182

    Article  Google Scholar 

  27. Emblem KE, Zoellner FG, Tennoe B, Nedregaard B, Nome T, Due-Tonnessen P, Bjornerud A (2008) Predictive modeling in glioma grading from MR perfusion images using support vector machines. Magn Reson Med 60(4):945–952. https://doi.org/10.1002/mrm.21736

    Article  Google Scholar 

  28. Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf R, Melhem ER et al (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618

    Article  Google Scholar 

  29. Zollner FG, Emblem KE, Schad LR (2010) Support vector machines in DSC-based glioma imaging: suggestions for optimal characterization. Magn Reson Med 64(4):1230–1236. https://doi.org/10.1002/mrm.22495

    Article  Google Scholar 

  30. Inano R, Oishi N, Kunieda T, Arakawa Y, Yamao Y, Shibata S et al (2014) Voxel-based clustered imaging by multi-parameter diffusion tensor images for glioma grading. Neuroimage Clin 5:396–407

    Article  Google Scholar 

  31. Ranjith G, Parvathy R, Vikas V, Chandrasekharan K, Nair S (2015) Machine learning methods for the classification of gliomas: Initial results using features extracted from MR spectroscopy. Neuroradiol J 28(2):106–111. https://doi.org/10.1177/1971400915576637

    Article  Google Scholar 

  32. Lo CM, Hsieh LC, Hsiao CJ (2016) Computer-aided grading of gliomas based on local and global MRI features. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2016.10.021

    Article  Google Scholar 

  33. Li-Chun Hsieh K, Chen CY, Lo CM (2017) Quantitative glioma grading using transformed gray-scale invariant textures of MRI. Comput Biol Med 83:102–108. https://doi.org/10.1016/j.compbiomed.2017.02.012

    Article  Google Scholar 

  34. Zhang X, Yan LF, Hu YC, Li G, Yang Y, Han Y et al (2017) optimizing a machine learning based glioma grading system using multipara metric MRI histogram and texture features. Oncotarget 8(29):47816–47830

    Article  Google Scholar 

  35. Gupta M, Rajagopalan V, Pioro EP, Rao P (2017) Volumetric analysis of MR images for glioma classification and their effect on brain tissues. Signal Image Video Process 11(7):1337–1345. https://doi.org/10.1007/s11760-017-1091-x

    Article  Google Scholar 

  36. Gupta N, Bhatele P, Khanna P (2018) Identification of Gliomas from brain MRI through adaptive segmentation and run length of centralized patterns. J Comput Sci 25:213–220. https://doi.org/10.1016/j.jocs.2017.02.009

    Article  Google Scholar 

  37. Citak-Er F, Firat Z, Kovanlikaya I, Ture U, Ozturk-Isik E (2018) Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T. Comput Biol Med 99:154–160. https://doi.org/10.1016/j.compbiomed.2018.06.009

    Article  Google Scholar 

  38. Cho H, Lee S, Kim J, Park H (2018) Classification of the glioma grading using radiomics analysis. PeerJ. https://doi.org/10.7717/peerj.5982

    Article  Google Scholar 

  39. Chen W, Liu B, Peng S, Sun J, Qiao X (2018) Computer-aided grading of gliomas combining automatic segmentation and radiomics. Int J Biomed Imaging. https://doi.org/10.1155/2018/2512037

    Article  Google Scholar 

  40. Gupta M, Rajagopalan V, Rao P (2018) Glioma grade classification using wavelet transform-local binary pattern based statistical texture features and geometric measures extracted from MRI. J Exp Theor Artif Intell. https://doi.org/10.1080/0952813X.2018.1518997

    Article  Google Scholar 

  41. Tian Q, Yan LF, Zhang X, Zhang X, Hu YC, Han Y, Cui GB (2018) Radiomics strategy for glioma grading using texture features from multiparametric MRI. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26010

    Article  Google Scholar 

  42. Dogra J, Jain S, Sood M (2019) Novel seed selection techniques for MR brain image segmentation using graph cut. Comput Methods Biomech Biomed Eng Imaging Vis 8(4):389–399. https://doi.org/10.1080/21681163.2019.1697966

    Article  Google Scholar 

  43. Jeong J, Wang L, Ji B, Lei Y, Ali A, Liu T, Curran WJ, Mao H, Yang X (2019) Machine-learning based classification of glioblastoma using delta-radiomic features derived from dynamic susceptibility contrast enhanced magnetic resonance images. Quant Imaging Med Surg 9(7):1201–1213. https://doi.org/10.21037/qims.2019.07.01.

  44. Wang X, Wang D, Yao Z, Xin B, Wang B, Lan C, Liu Y (2019) Machine learning models for multiparametric glioma grading with quantitative result interpretations. Front Neurosci. https://doi.org/10.3389/fnins.2018.01046

    Article  Google Scholar 

  45. Yang Y, Yan LF, Zhang X, Nan HY, Hu YC, Han Y, Cui GB (2019) Optimizing texture retrieving model for multimodal MR image-based support vector machine for classifying glioma. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26524

    Article  Google Scholar 

  46. Xiao T, Hua W, Li C, Wang S (2019) Glioma grading prediction by exploring radiomics and deep learning features. In: Proceedings of the third international symposium on image computing and digital medicine association for computing machinery New York USA. https://doi.org/10.1145/3364836.3364877

  47. Gupta N, Bhatele P, Khanna P (2019) Glioma detection on brain MRIs using texture and morphological features with ensemble learning. J Biomed Signal Process Control 47:115–125. https://doi.org/10.1016/j.bspc.2018.06.003

    Article  Google Scholar 

  48. Abdelaziz Ismael SA, Mohammed A, Hefny H (2019) An enhanced deep learning approach for brain cancer MRI images classification using residual networks. Artif Intell Med. https://doi.org/10.1016/j.artmed.2019.101779

    Article  Google Scholar 

  49. Rathore S, Niazi T, Iftikhar MA, Chaddad A (2020) Glioma grading via analysis of digital pathology images using machine learning. Cancers. https://doi.org/10.3390/cancers12030578

    Article  Google Scholar 

  50. Cao H, Erson-Omay EZ, Li X et al (2020) A quantitative model based on clinically relevant MRI features differentiates lower grade gliomas and glioblastoma. Eur Radiol. https://doi.org/10.1007/s00330-019-06632-8

    Article  Google Scholar 

  51. Zhang Z, Xiao J, Wu S et al (2020) Deep convolutional radiomic features on diffusion tensor images for classification of glioma grades. J Digital Imaging. https://doi.org/10.1007/s10278-020-00322-4

    Article  Google Scholar 

  52. Li J, Liu S, Qin Y, Zhang Y, Wang N, Liu H (2020) High-order radiomics features based on T2 FLAIR MRI predict multiple glioma immunohistochemical features: a more precise and personalized gliomas management. PLoS ONE 15(1):e0227703. https://doi.org/10.1371/journal.pone.0227703

    Article  Google Scholar 

  53. Lu Z, Bai Y, Chen Y, Su C, Lu S, Zhan T, Wang S (2020) The classification of gliomas based on a Pyramid dilated convolution resnet model. Pattern Recogn Lett 133:173–179. https://doi.org/10.1016/j.patrec.2020.03.007

    Article  Google Scholar 

  54. Zhuge Y, Ning H, Mathen P, Cheng JY, Krauze AV, Camphausen K, Miller R (2020) Automated glioma grading on conventional mri images using deep convolutional neural networks. Med Phys. https://doi.org/10.1002/mp.14168

    Article  Google Scholar 

  55. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577. https://doi.org/10.1148/radiol.2015151169

    Article  Google Scholar 

  56. Kickingereder P, Bonekamp D, Nowosielski M, Kratz A, Sill M, Burth S, Capper D (2016) Radiogenomics of glioblastoma: machine learning–based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 281(3):907–918. https://doi.org/10.1148/radiol.2016161382

    Article  Google Scholar 

  57. Zlochower A, Chow DS, Chang P, Khatri D, Boockvar JA, Filippi CG (2020) Deep learning AI applications in the imaging of glioma. Top Magn Reson Imaging 29(2):115–200. https://doi.org/10.1097/rmr.0000000000000237

    Article  Google Scholar 

  58. Upadhyay N, Waldman AD (2011) Conventional MRI evaluation of gliomas. Br J Radiol 84(2):S107–S111. https://doi.org/10.1259/bjr/65711810

    Article  Google Scholar 

  59. Golshan HM, Hasanzedeh RPR, Yousefzadeh SC (2013) An MRI de-noising method using data redundancy and local SNR estimation. Magn Reson Imaging 31:1206–1217. https://doi.org/10.1016/j.mri.2013.04.004

    Article  Google Scholar 

  60. Davies ER (2018) The role of thresholding. In: Pitts T (ed) Computer vision, 5th edn. Academic Press, Cambridge, pp 93–118

    Chapter  Google Scholar 

  61. Wu P, Xie K, Zheng Y, Wu C (2012) Brain tumors classification based on 3D shape. In: Jin D, Lin S (eds) Advances in future computer and control systems, advances in intelligent and soft computing. Springer, Berlin, Heidelberg, pp 277–283

    Google Scholar 

  62. Asodekar BH, Gore SA, Thakare AD (2019) Brain tumor analysis based on shape features of MRI using machine learning. In: 5th international conference on computing, communication, control and automation (ICCUBEA), Pune, India. https://doi.org/10.1109/ICCUBEA47591.2019.9129512.

  63. Gumaste PP, Bairagi VK (2020) A hybrid method for brain tumor detection using advanced textural feature extraction. Biomed Pharmacol J https://doi.org/10.13005/bpj/1871.

  64. Bauer S, May C, Dionysiou D et al (2012) Multiscale modeling for image analysis of brain tumor studies. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2011.2163406

    Article  Google Scholar 

  65. Ahmed S, Iftekharuddin KM, Vossough A (2011) Efficacy of texture, shape, and intensity feature fusion for posterior-fossa tumor segmentation in MRI. IEEE Trans Inf Technol Biomed. https://doi.org/10.1109/TITB.2011.2104376

    Article  Google Scholar 

  66. Chaddad A, Desrosiers C, Hassan L, Tanougast C (2016) A quantitative study of shape descriptors from glioblastoma multiforme phenotypes for predicting survival outcome. Br J Radiol 89:1068. https://doi.org/10.1259/bjr.20160575

    Article  Google Scholar 

  67. Goldberg-Zimring D, Talos IF, Bhagwat JG, Haker SJ, Black PM, Zou KH (2005) Statistical validation of brain tumor shape approximation via spherical harmonics for image guided neurosurgery. Acad Radiol. https://doi.org/10.1016/j.acra.2004.11.032

    Article  Google Scholar 

  68. Bharath K, Kurtek S, Rao A, Baladandayuthapani V (2005) Radiologic image-based statistical shape analysis of brain tumours. J R Stat Soc Ser C Appl Stat 67(5):1357–1378. https://doi.org/10.1111/rssc.12272

    Article  MathSciNet  Google Scholar 

  69. Das S., Jena UR (2016) Texture classification using combination of LBP and GLRLM features along with KNN and multiclass SVM classification. In: 2nd international conference on communication control and intelligent systems (CCIS), Mathura. https://doi.org/10.1109/CCIntelS.2016.7878212.

  70. Georgiadis P, Cavouras D, Kalatzis I, Daskalakis A, Kagadis GC et al (2008) Improving brain tumor characterization on mri by probabilistic neural networks and nonlinear transformation of textural features. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2007.10.007

    Article  Google Scholar 

  71. Brunese L, Mercaldo F, Reginelli A, Santone A (2019) An ensemble learning approach for brain cancer detection exploiting radiomic features. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2019.105134

    Article  Google Scholar 

  72. Rodriguez Gutierrez D, Awwad A, Meijer L, Manita M, Jaspan T, Dineen RA, Grundy RG, Auer DP (2014) Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. AJNR Am J Neuroradiol 35(5):1009–1015

    Article  Google Scholar 

  73. Skogen K, Schulz A, Dormagen JB, Ganeshan B, Helseth E, Server A (2016) Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Eur J Radiol 85(4):824–829

    Article  Google Scholar 

  74. Vamvakas A, Williams SC, Theodorou K, Kapsalaki E, Fountas K, Kappas C et al (2019) Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Phys Med 60:188–198

    Article  Google Scholar 

  75. Hu LS, Ning S, Eschbacher JM, Gaw N, Dueck AC, Smith KA et al (2015) Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma. PLoS ONE J 10(11):e0141506. https://doi.org/10.1371/journal.pone.0141506

    Article  Google Scholar 

  76. Sanghani P, Ti AB, Kam King NK, Ren H (2018) Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning. Surg Oncol. https://doi.org/10.1016/j.suronc.2018.09.002

    Article  Google Scholar 

  77. Gore S, Chougule T, Jagtap J, Saini J, Ingalhalikar M (2020) A review of radiomics and deep predictive modeling in glioma characterization. Acad Radiol. https://doi.org/10.1016/j.acra.2020.06.016

    Article  Google Scholar 

  78. Mahmoud-Ghoneim D, Toussaint G, Constans JM, de Certaines JD (2003) Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas. Magn Reson Imaging 21(9):983–987. https://doi.org/10.1016/s0730-725x(03)00201-7

    Article  Google Scholar 

  79. Alcaide-Leon P, Dufort P, Geraldo AF, Alshafai L, Maralani PJ, Spears J, Bharatha A (2017) Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning. Am J Neuroradiol 38(6):1145–1150. https://doi.org/10.3174/ajnr.A5173

    Article  Google Scholar 

  80. Upadhaya T, Morvan Y, Stindel E, Le Reste P, Ηatt M (2015) Prognostic value of multimodal MRI tumor features in Glioblastoma multiforme using textural features analysis. In: IEEE 12th international symposium on biomedical imaging (ISBI), New York. https://doi.org/10.1109/ISBI.2015.7163814.

  81. Herlidou-Même S, Constans J, Carsin B, Olivie D, Eliat P et al (2003) MRI texture analysis on texture test objects, normal brain and intracranial tumors. Magn Reson Imaging 21(9):989–993. https://doi.org/10.1016/s0730-725x(03)00212-1

    Article  Google Scholar 

  82. Grigorescu SE, Petkov N, Kruizinga P (2002) Comparison of texture features based on Gabor filters. IEEE Trans Image Process 11(10):1160–1167. https://doi.org/10.1109/TIP.2002.804262

    Article  MathSciNet  Google Scholar 

  83. Al-Kadi OS (2017) A Gabor filter texture analysis approach for histopathological brain tumor subtype discrimination. arXiv preprint http://arxiv.org/abs/1704.05122.

  84. Lee TS (1996) Image representation using 2D Gabor wavelets. IEEE Trans Pattern Anal Mach Intell 18(10):959–971

    Article  Google Scholar 

  85. Gumaei A, Hassan MM, Hassan MR, Alelaiwi A, Fortino G (2019) A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access 7:36266–36273. https://doi.org/10.1109/ACCESS.2019.2904145

    Article  Google Scholar 

  86. Ara SR, Bashar SK, Alam F, Hasan MK (2017) EMD-DWT based transform domain feature reduction approach for quantitative multi-class classification of breast lesions. Ultrasonics 80:22–33

    Article  Google Scholar 

  87. Dhage SS, Hegde SS, Manikantan K, Ramachandran S (2015) DWT-based feature extraction and radon transform based contrast enhancement for improved iris recognition. Procedia Comput Sci 45:256–265

    Article  Google Scholar 

  88. Kaplan K, Kaya Y, Kuncan M, Ertunç HM (2020) Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Med Hypotheses 139:109696. https://doi.org/10.1016/j.mehy.2020.109696

    Article  Google Scholar 

  89. Kaya Y, Ertuğrul ÖF, Tekin R (2015) Two novel local binary pattern descriptors for texture analysis. Appl Soft Comput 34:728–735

    Article  Google Scholar 

  90. Liu L, Zhao L, Long Y, Kuang G, Fieguth P (2012) Extended local binary patterns for texture classification. Image Vis Comput 30(2):86–99

    Article  Google Scholar 

  91. Vidyarthi A, Mittal N (2017) Texture based feature extraction method for classification of brain tumor MRI. J Intell Fuzzy Syst 32(4):2807–2818. https://doi.org/10.3233/JIFS-169223

    Article  Google Scholar 

  92. Wu Y, Liu B, Wu W et al (2018) Grading glioma by radiomics with feature selection based on mutual information. J Ambient Intell Human Comput 9:1671–1682. https://doi.org/10.1007/s12652-018-0883-3

    Article  Google Scholar 

  93. Liu L, Fieguth P, Science E, Kuang G (2011) Generalized local binary patterns for texture classification. Proc Br Mach Vis Conf 123:1–123

    Google Scholar 

  94. Hai LH, Guu LJ (1998) The analysis of natural textures using run length features. IEEE Trans Industr Electron 35(2):323–328. https://doi.org/10.1109/41.192665

    Article  Google Scholar 

  95. Gonzalez RC, Eddins SL, Woods RE (2004) Digital image publishing using MATLAB. Prentice Hall, Englewood Cliffs

    Google Scholar 

  96. Yu M, Deng K, Yang H, Qin C (2018) Improved WαsH Feature Matching Based on 2D-DWT for Stereo Remote Sensing Images. Sensors (Basel) MDPI 18(10):3494. https://doi.org/10.3390/s18103494.

  97. Ojala T, Pietikainen M, Harwood D (1994) Performance evaluation of texture measures with classification based on Kullback discrimination of distributions in Pattern Recognition. In: Proceedings of the 12th IAPR international conference on computer vision & image processing IEEE, vol 1. pp 582–585.

  98. Ojala T, Pietikainen M, Maenpaa T (2002) Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  99. Tang X (1998) Texture information in run-length matrices. IEEE Trans Image Process 7(11):1602–1609. https://doi.org/10.1109/83.725367

    Article  Google Scholar 

  100. Brandl G (2019) Get Started with XGBoost. https://xgboost.readthedocs.io/en/latest/tutorials/rf.html. Accessed on 8 October 2019.

  101. Dong X, Yu Z, Cao W et al (2020) A survey on ensemble learning. Front Comput Sci 14:241. https://doi.org/10.1007/s11704-019-8208-z

    Article  Google Scholar 

  102. Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (KDD '16) ACM New York, USA pp 785–794. https://doi.org/10.1145/2939672.2939785.

  103. Breiman L (2001) Random forest. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  104. Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, Knopp EA, Zagzag D (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol 24(10):1989–1998

    Google Scholar 

  105. Hambali M, Saheed Y, Oladele T, Gbolagade M (2019) ADaBoost Ensemble Algorithms for Breast cancer classification. J Adv Comput Res 10(2):1–10

    Google Scholar 

Download references

Acknowledgements

We like to thank the MP MRI and CT scan centre at Netaji Subhash Chandra Bose Medical College, Jabalpur, Sanya Diagnostic MRI center, Bhopal and Cancer Hospital Gwalior for providing the clinical MRI dataset of Brain MRI images. I am thankful to all the radiologists for providing their valuable support in terms of providing data, Knowledge and validate this proposed work.

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirti Raj Bhatele.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors. The Local dataset consist of only MRI images of low and high grade glioma brain tumour collected from the MP MRI and CT scan centre at Netaji Subhash Chandra Bose Medical College, Jabalpur, Sanya Diagnostic MRI center, Bhopal and Cancer Hospital Gwalior, India and is in accordance with the ethical standards of these institutions. The other two datasets i.e. BRATS 2013 and 2015 are publicly available datasets.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatele, K.R., Bhadauria, S.S. Machine learning application in Glioma classification: review and comparison analysis. Arch Computat Methods Eng 29, 247–274 (2022). https://doi.org/10.1007/s11831-021-09572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09572-z

Navigation