Skip to main content
Log in

Applied and Theoretical Aspects of Conjugate Heat Transfer Analysis: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper documents all the important works in the field of conjugate heat transfer study. Theoretical and applied aspects of conjugate heat transfer analysis are reviewed and summarized to a great extent on the light of available literature in this field. Over the years, conjugate heat transfer analysis has been evolved as the most effective method of heat transfer study. In this approach the mutual effects of thermal conduction in the solid and convection in the fluid are considered in the analysis. Various analytical and computational studies are reported in this field. Comprehension of analytical as well as computational studies of this field will help the researchers and scientists who work in this area to progress in their research. That is the focus of this review. Early analytical studies related to conjugate heat transfer are reviewed and summarised in the first part of this paper. Background of theoretical studies is discussed briefly. More importance is given in summarising the computational studies in this field. Different coupling techniques proposed to date are presented in great detail. Important studies narrating the application of conjugate heat transfer analysis are also discussed under separate headings. Hence the present paper gives complete theoretical background of Conjugate heat transfer along with direction to its application envelope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: [81])

Fig. 2
Fig. 3

(Source: [81])

Fig. 4

(Source: [81])

Fig. 5

(Source: [8])

Fig. 6

(Source: [8])

Fig. 7

(Source: [88])

Fig. 8

(Source: [88])

Similar content being viewed by others

References

  1. Ahammad Basha D, Prasanna S, Venkateshan SP (2012) Mixed convection from an upward facing horizontal flat plate: effect of conduction and radiation. Heat Mass Transf 48(12):2125–2131. https://doi.org/10.1007/s00231-012-1021-y

    Article  Google Scholar 

  2. Alonso JJ, Hahn S, Ham F, Herrmann M, Iaccarino G, Kalitzin G, LeGresley P, Mattsson K, Medic G, Moin P et al (2006) Chimps: a high-performance scalable module for multi-physics simulation. In: Proceedings of the 42nd AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, Sacramento, CA, July, pp 9–12

  3. Amin MR, Greif D (1999) Conjugate heat transfer during two-phase solidification process in a continuously moving metal using average heat capacity method. Int J Heat Mass Transf 42(15):2883–2895

    Article  MATH  Google Scholar 

  4. Aziz A, Lopez RJ (2011) Convection–radiation from a continuously moving, variable thermal conductivity sheet or rod undergoing thermal processing. Int J Therm Sci 50(8):1523–1531

    Article  Google Scholar 

  5. Bhanja D, Kundu B, Aziz A (2014) Enhancement of heat transfer from a continuously moving porous fin exposed in convective–radiative environment. Energy Convers Manag 88:842–853

    Article  Google Scholar 

  6. Bohn D, Ren J, Kusterer K (2005) Systematic investigation on conjugate heat transfer rates of film cooling configurations. Int J Rotat Mach 2005(3):211–220

    Article  Google Scholar 

  7. Choudhury SR, Jaluria Y (1994) Forced corrective heat transfer from a continuously loving heated cylindrical rod in materials processing. ASME J Heat Transf 116(3):724–734

    Article  Google Scholar 

  8. Crowell AR, Miller BA, McNamara JJ (2011) Computational modeling for conjugate heat transfer of shock-surface interactions on compliant skin panels. In: 13th AIAA dynamics specialists conference, Denver, CO, pp 1–18

  9. Crowell AR, Miller BA, McNamara JJ (2014) Robust and efficient treatment of temperature feedback in fluid–thermal–structural analysis. AIAA J 52(11):2395–2413

    Article  Google Scholar 

  10. Dechaumphai P, WIETING AR, THORNTON EA (1989) Flow-thermal-structural study of aerodynamically heated leading edges. J Spacecr Rockets 26(4):201–209

    Article  Google Scholar 

  11. Desrayaud G, Fichera A, Lauriat G (2007) Natural convection air-cooling of a substrate-mounted protruding heat source in a stack of parallel boards. Int J Heat Fluid Flow 28(3):469–482

    Article  Google Scholar 

  12. Dogan M, Sivrioglu M, Yılmaz O (2014) Numerical analysis of natural convection and radiation heat transfer from various shaped thin fin-arrays placed on a horizontal plate-a conjugate analysis. Energy Convers Manag 77:78–88

    Article  Google Scholar 

  13. Duchaine F, Corpron A, Pons L, Moureau V, Nicoud F, Poinsot T (2009) Development and assessment of a coupled strategy for conjugate heat transfer with large eddy simulation: application to a cooled turbine blade. Int J Heat Fluid Flow 30(6):1129–1141

    Article  Google Scholar 

  14. Facchini B, Magi A, Del Greco AS (2004) Conjugate heat transfer simulation of a radially cooled gas turbine vane. In: ASME turbo expo 2004: power for land, sea, and air. American Society of Mechanical Engineers, pp 951–961

  15. Farhat C, Lesoinne M (2000) Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput Methods Appl Mech Eng 182(3):499–515

    Article  MATH  Google Scholar 

  16. Fedorov AG, Viskanta R (2000) Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging. Int J Heat Mass Transf 43(3):399–415. https://doi.org/10.1016/S0017-9310(99)00151-9

    Article  MATH  Google Scholar 

  17. Ganesan V (2007) Non-reacting and reacting flow analysis in an aero-engine gas turbine combustor using cfd. Technical report, SAE technical paper

  18. Garg VK (2002) Heat transfer research on gas turbine airfoils at nasa grc. Int J Heat Fluid Flow 23(2):109–136

    Article  Google Scholar 

  19. Giles MB (1997) Stability analysis of numerical interface conditions in fluid–structure thermal analysis. Int J Numer Methods Fluids 25(4):421–436

    Article  MathSciNet  MATH  Google Scholar 

  20. Guiqing HTMGJ, Weijiang Z (2000) Two dimensional coupled flow-thermal structural numerical simulation. Acta Aerodyn Sin 1:019

    Google Scholar 

  21. Hajmohammadi MR, Campo A, Nourazar SS, Ostad AM (2013) Improvement of forced convection cooling due to the attachment of heat sources to a conducting thick plate. J Heat Transf 135(12):124504

    Article  Google Scholar 

  22. Han ZX, Dennis BH, Dulikravich GS (2001) Simultaneous prediction of external flow-field and temperature in internally cooled 3-d turbine blade material. Int J Turbo Jet Engines 18(1):47–58

    Article  Google Scholar 

  23. Heidmann JD, Kassab AJ, Divo EA, Rodriguez F, Steinthorsson E (2003) Conjugate heat transfer effects on a realistic film-cooled turbine vane. In: ASME turbo expo 2003, collocated with the 2003 international joint power generation conference. American Society of Mechanical Engineers, pp 361–371

  24. Henshaw WD, Chand KK (2009) A composite grid solver for conjugate heat transfer in fluid–structure systems. J Comput Phys 228(10):3708–3741. https://doi.org/10.1016/j.jcp.2009.02.007

    Article  MathSciNet  MATH  Google Scholar 

  25. Heselhaus A, Vogel D (1995) Numerical simulation of turbine blade cooling with respect to blade heat conduction and inlet temperature profiles. In: AIAA, ASME, SAE, and ASEE, joint propulsion conference and exhibit, 31 st, San Diego, CA

  26. Hosters N, Klaus M, Behr M, Reimerdes HG (2013) Application of a partitioned field approach to transient aerothermal problems in rocket nozzles. Comput Fluids 88:795–803. https://doi.org/10.1016/j.compfluid.2013.06.014

    Article  MathSciNet  MATH  Google Scholar 

  27. Issa R (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62(1):40–65. https://doi.org/10.1016/0021-9991(86)90099-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Jaluria Y (1992) Transport from continuously moving materials undergoing thermal processing. Ann Rev Heat Transf 4(4):187–245

    Article  Google Scholar 

  29. Kanna PR, Das MK (2005) Conjugate forced convection heat transfer from a flat plate by laminar plane wall jet flow. Int J Heat Mass Transf 48(14):2896–2910. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.033

    Article  MATH  Google Scholar 

  30. Kao KH, Liou MS (1997) Application of chimera/unstructured hybrid grids for conjugate heat transfer. AIAA J 35(9):1472–1478

    Article  MATH  Google Scholar 

  31. Karvinen R (1978) Some new results for conjugated heat transfer in a flat plate. Int J Heat Mass Transf 21(9):1261–1264. https://doi.org/10.1016/0017-9310(78)90145-X

    Article  Google Scholar 

  32. Karvinen R (2012) Use of analytical expressions of convection in conjugated heat transfer problems. J Heat Transf 134(3):031007

    Article  Google Scholar 

  33. Karwe M, Jaluria Y (1991) Numerical simulation of thermal transport associated with a continuously moving flat sheet in materials processing. ASME J Heat Transf 113(3):612–619

    Article  Google Scholar 

  34. Kassab A, Divo E, Heidmann J, Steinthorsson E, Rodriguez F (2003) BEM/FVM conjugate heat transfer analysis of a three-dimensional film cooled turbine blade. Int J Numer Methods Heat Fluid Flow 13(5):581–610

    Article  MATH  Google Scholar 

  35. Kazemi Kamyab V (2013) High order time-accurate partitioned simulation of unsteady conjugate heat transfer; analysis and application of implicit Runge–Kutta time integration schemes. Ph.D. thesis, TU Delft, Delft University of Technology

  36. Keyes DE, McInnes LC, Woodward C, Gropp W, Myra E, Pernice M, Bell J, Brown J, Clo A, Connors J et al (2013) Multiphysics simulations challenges and opportunities. Int J High Perform Comput Appl 27(1):4–83

    Article  Google Scholar 

  37. Kolios M, Sherar M, Hunt J (1995) Large blood vessel cooling in heated tissues: a numerical study. Phys Med Biol 40(4):477

    Article  Google Scholar 

  38. Kumar I (1968) Conjugate heat transfer problem in laminar boundary layer with blowing. J Eng Phys Thermodyn 14:781–791

    Google Scholar 

  39. Kumar I, Bartman A Conjugate heat transfer from radiated plate to laminar boundary layer of compressible fluid (in russian). In: Teplo-iMassoperenos, Nauka i Technika, Minsk, vol 9

  40. Kumari M, Nath G (2006) Conjugate mixed convection transport from a moving vertical plate in a non-Newtonian fluid. Int J Therm Sci 45(6):607–614

    Article  Google Scholar 

  41. Lesoinne M, Farhat C (1998) Improved staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. In: Proceedings of the WCCM IV conference on computational mechanics. CIMNE, Barcelona

  42. Li Z, Tao WQ, He YL (2005) A numerical study of laminar convective heat transfer in microchannel with non-circular cross-section. In: ASME 3rd international conference on microchannels and minichannels. American Society of Mechanical Engineers, pp 351–360

  43. Lin P, Jaluria Y (1998) Conjugate thermal transport in the channel of an extruder for non-Newtonian fluids. Int J Heat Mass Transf 41(21):3239–3253

    Article  Google Scholar 

  44. Lindstedt M, Karvinen R (2013) Conjugate heat transfer in a plate one surface at constant temperature and the other cooled by forced or natural convection. Int J Heat Mass Transf 66:489–495. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.052

    Article  Google Scholar 

  45. Liu Q, Luke EA, Cinnella P (2005) Coupling heat transfer and fluid flow solvers for multidisciplinary simulations. J Thermophys Heat Transf 19(4):417–427

    Article  Google Scholar 

  46. Luikov A (1974) Conjugate convective heat transfer problems. Int J Heat Mass Transf 17(2):257–265

    Article  Google Scholar 

  47. Luikov A, Aleksashenko V, Aleksashenko A (1971) Analytical methods of solution of conjugated problems in convective heat transfer. Int J Heat Mass Transf 14(8):1047–1056

    Article  MATH  Google Scholar 

  48. Luo J, Razinsky EH (2007) Conjugate heat transfer analysis of a cooled turbine vane using the V2F turbulence model. J Turbomach 129(4):773–781

    Article  Google Scholar 

  49. Malvandi A, Hedayati F, Ganji D (2015) Onset of the mutual thermal effects of solid body and nanofluid flow over a flat plate theoretical study. J Appl Fluid Mech 8(4):835–843

    Article  Google Scholar 

  50. Marinis DD, de Tullio M, Napolitano M, Pascazio G (2015) A conjugate-heat-transfer immersed-boundary method for turbine cooling. Energy Procedia 82:215–221. https://doi.org/10.1016/j.egypro.2015.12.025. In: 70th conference of the Italian Thermal Machines Engineering Association, ATI2015

  51. Matthies HG, Steindorf J (2002) Partitioned but strongly coupled iteration schemes for nonlinear fluid–structure interaction. Comput Struct 80(27):1991–1999

    Article  Google Scholar 

  52. Megahed AM (2015) Flow and heat transfer of a non-newtonian power-law fluid over a non-linearly stretching vertical surface with heat flux and thermal radiation. Meccanica 50(7):1693–1700

    Article  MathSciNet  Google Scholar 

  53. Merkle C (1995) Preconditioning methods for viscous flow calculations. In: Hafez M, Oshima K (eds) Computational fluid dynamics review. Wiley, Chichester, pp 419–436

    Google Scholar 

  54. Miller BA (2015) Loosely coupled time integration of fluid–thermal–structural interactions in hypersonic flows. Ph.D. thesis, The Ohio State University

  55. Miller BA, Crowell AR, McNamara JJ (2013) Loosely coupled time-marching of fluid–thermal–structural interactions. In: 54th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Boston, MA

  56. Mosaad M (1999) Laminar forced convection conjugate heat transfer over a flat plate. Heat Mass transf 35(5):371–375

    Article  Google Scholar 

  57. Mosaad M, Ben-Nakhi A (2003) Conjugate parallel-flowing free and forced convection boundary layers on vertical wall sides. Heat Mass Transf 39(3):177–182

    Article  Google Scholar 

  58. Mouro J (1996) Numerical simulation of nonlinear fluid structure interactions problems and application to hydraulic shock-absorbers. In: Proceedings of the third world conference on applied computational fluid dynamics, Basel World User Days CFD, pp 19–23

  59. Murty MC, Manna P, Chakraborty D (2013) Conjugate heat transfer analysis in high speed flows. Proc Inst Mech Eng Part G J Aerosp Eng 227(10):1672–1681

    Article  Google Scholar 

  60. Pantazis S, Buthig J, Jousten K (2014) Conjugate heat transfer simulations of a thermocouple sensor in a low temperature nitrogen gas ambient. Int J Heat Mass Transf 70:536–544

    Article  Google Scholar 

  61. Papanicolaou E, Giebert D, Koch R, Schulz A (2001) A conservation-based discretization approach for conjugate heat transfer calculations in hot-gas ducting turbomachinery components. Int J Heat Mass Transf 44(18):3413–3429

    Article  MATH  Google Scholar 

  62. Payvar P (1977) Convective heat transfer to laminar flow over a plate of finite thickness. Int J Heat Mass Transf 20(4):431–433

    Article  MATH  Google Scholar 

  63. Peetala RK (2014) Conjugate heat transfer analysis in hypersonic applications. Ph.D. thesis

  64. Perelman T (1961) Heat transfer between a laminar boundary layer and a thin plate with the inner sources. J Engn Phys Thermodyn 4(5):54–61

    Google Scholar 

  65. Perelman T (1961) On conjugated problems of heat transfer. Int J Heat Mass Transf 3(4):293–303

    Article  Google Scholar 

  66. Pozzi A, Lupo M (1989) The coupling of conduction with forced convection over a flat plate. Int J Heat Mass Transf 32(7):1207–1214. https://doi.org/10.1016/0017-9310(89)90021-5

    Article  Google Scholar 

  67. Qu W, Mudawar I (2002) Analysis of three-dimensional heat transfer in micro-channel heat sinks. Int J Heat Mass Transf 45(19):3973–3985

    Article  MATH  Google Scholar 

  68. Rahman F, Visser JA, Morris RM (2005) Capturing sudden increase in heat transfer on the suction side of a turbine blade using a Navier–Stokes solver. J Turbomach 127(3):552–556

    Article  Google Scholar 

  69. Roe B, Jaiman R, Haselbacher A, Geubelle P (2008) Combined interface boundary condition method for coupled thermal simulations. Int J Numer Methods Fluids 57(3):329–354

    Article  MathSciNet  MATH  Google Scholar 

  70. Shih TI, Ramachandran SG, Chyu MK (2013) Time-accurate CFD conjugate analysis of transient measurements of the heat-transfer coefficient in a channel with pin fins. Propuls Power Res 2(1):10–19

    Article  Google Scholar 

  71. Silieti M, Divo E, Kassab AJ (2010) The effect of conjugate heat transfer on film cooling effectiveness. Numer Heat Transf Part B Fundam 56(5):335–350

    Article  Google Scholar 

  72. Silieti M, Kassab AJ, Divo E (2005) Film cooling effectiveness from a single scaled-up fan-shaped hole: a CFD simulation of adiabatic and conjugate heat transfer models. In: ASME turbo expo 2005: power for land, sea, and air. American Society of Mechanical Engineers, pp 431–441

  73. Silieti M, Kassab AJ, Divo E (2009) Film cooling effectiveness: comparison of adiabatic and conjugate heat transfer CFD models. Int J Therm Sci 48(12):2237–2248. https://doi.org/10.1016/j.ijthermalsci.2009.04.007

    Article  Google Scholar 

  74. Sondak DL, Dorney DJ (2000) Simulation of coupled unsteady flow and heat conduction in turbine stage. J Propuls Power 16(6):1141–1148

    Article  Google Scholar 

  75. Sundn B (1980) Conjugated heat transfer from circular cylinders in low Reynolds number flow. Int J Heat Mass Transf 23(10):1359–1367. https://doi.org/10.1016/0017-9310(80)90210-0

    Article  Google Scholar 

  76. Toh K, Chen X, Chai J (2002) Numerical computation of fluid flow and heat transfer in microchannels. Int J Heat Mass Transf 45(26):5133–5141. https://doi.org/10.1016/S0017-9310(02)00223-5

    Article  MATH  Google Scholar 

  77. Trevio C, lin A (1984) External heating of a flat plate in a convective flow. Int J Heat Mass Transf 27(7):1067–1073. https://doi.org/10.1016/0017-9310(84)90122-4

    Article  Google Scholar 

  78. Trevino C, Becerra G, Mndez F (1997) The classical problem of convective heat transfer in laminar flow over a thin finite thickness plate with uniform temperature at the lower surface. Int J Heat Mass Transf 40(15):3577–3580. https://doi.org/10.1016/S0017-9310(97)00005-7

    Article  MATH  Google Scholar 

  79. Villafañe L, Paniagua G (2013) Aero-thermal analysis of shielded fine wire thermocouple probes. Int J Therm Sci 65:214–223

    Article  Google Scholar 

  80. Vynnycky M, Kimura S, Kanev K, Pop I (1998) Forced convection heat transfer from a flat plate: the conjugate problem. Int J Heat Mass Transf 41(1):45–59

    Article  MATH  Google Scholar 

  81. Wang P, Li Y, Zou Z, Zhang W (2013) Conjugate heat transfer investigation of cooled turbine using the preconditioned density-based algorithm. Propuls Power Res 2(1):56–69

    Article  Google Scholar 

  82. Weisberg A, Bau HH, Zemel J (1992) Analysis of microchannels for integrated cooling. Int J Heat Mass Transf 35(10):2465–2474

    Article  Google Scholar 

  83. Weiss JM, Smith WA (1995) Preconditioning applied to variable and constant density flows. AIAA J 33(11):2050–2057

    Article  MATH  Google Scholar 

  84. Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12(6):620–631

    Article  Google Scholar 

  85. York WD, Leylek JH (2003) Three-dimensional conjugate heat transfer simulation of an internally-cooled gas turbine vane. In: ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference. American Society of Mechanical Engineers, pp 351–360

  86. Zebib A, Wo Y (1989) A two-dimensional conjugate heat transfer model for forced air cooling of an electronic device. J Electron Packag 111(1):41–45

    Article  Google Scholar 

  87. Zhang S, Chen F, Liu H (2014) Time-adaptive, loosely coupled strategy for conjugate heat transfer problems in hypersonic flows. J Thermophys Heat Transf 28(4):635–646

    Article  Google Scholar 

  88. Zhao X, Sun Z, Tang L, Zheng G (2011) Coupled flow-thermal-structural analysis of hypersonic aerodynamically heated cylindrical leading edge. Eng Appl Comput Fluid Mech 5(2):170–179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibin John.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, B., Senthilkumar, P. & Sadasivan, S. Applied and Theoretical Aspects of Conjugate Heat Transfer Analysis: A Review. Arch Computat Methods Eng 26, 475–489 (2019). https://doi.org/10.1007/s11831-018-9252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-018-9252-9

Navigation