Skip to main content
Log in

High Order Direct Arbitrary-Lagrangian–Eulerian (ALE) Finite Volume Schemes for Hyperbolic Systems on Unstructured Meshes

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this work we develop a new class of high order accurate Arbitrary-Lagrangian–Eulerian (ALE) one-step finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations. The numerical algorithm is designed for two and three space dimensions, considering moving unstructured triangular and tetrahedral meshes, respectively. As usual for finite volume schemes, data are represented within each control volume by piecewise constant values that evolve in time, hence implying the use of some strategies to improve the order of accuracy of the algorithm. In our approach high order of accuracy in space is obtained by adopting a WENO reconstruction technique, which produces piecewise polynomials of higher degree starting from the known cell averages. Such spatial high order accurate reconstruction is then employed to achieve high order of accuracy also in time using an element-local space–time finite element predictor, which performs a one-step time discretization. Specifically, we adopt a discontinuous Galerkin predictor which can handle stiff source terms that might produce jumps in the local space–time solution. Since we are dealing with moving meshes the elements deform while the solution is evolving in time, hence making the use of a reference system very convenient. Therefore, within the space–time predictor, the physical element is mapped onto a reference element using a high order isoparametric approach, where the space–time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space–time nodes. The computational mesh continuously changes its configuration in time, following as closely as possible the flow motion. The entire mesh motion procedure is composed by three main steps, namely the Lagrangian step, the rezoning step and the relaxation step. In order to obtain a continuous mesh configuration at any time level, the mesh motion is evaluated by assigning each node of the computational mesh with a unique velocity vector at each timestep. The nodal solver algorithm preforms the Lagrangian stage, while we rely on a rezoning algorithm to improve the mesh quality when the flow motion becomes very complex, hence producing highly deformed computational elements. A so-called relaxation algorithm is finally employed to partially recover the optimal Lagrangian accuracy where the computational elements are not distorted too much. We underline that our scheme is supposed to be an ALE algorithm, where the local mesh velocity can be chosen independently from the local fluid velocity. Once the vertex velocity and thus the new node location has been determined, the old element configuration at time \(t^n\) is connected with the new one at time \(t^{n+1}\) with straight edges to represent the local mesh motion, in order to maintain algorithmic simplicity. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing system of hyperbolic balance laws. The nonlinear system is reformulated more compactly using a space–time divergence operator and is then integrated on a moving space–time control volume. We adopt a linear parametrization of the space–time element boundaries and Gaussian quadrature rules of suitable order of accuracy to compute the integrals. We apply the new high order direct ALE finite volume schemes to several hyperbolic systems, namely the multidimensional Euler equations of compressible gas dynamics, the ideal classical magneto-hydrodynamics equations and the non-conservative seven-equation Baer–Nunziato model of compressible multi-phase flows with stiff relaxation source terms. Numerical convergence studies as well as several classical test problems will be shown to assess the accuracy and the robustness of our schemes. Finally we briefly present some variants of the algorithm that aim at improving the overall computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  1. Abgrall R (1994) On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J Comput Phys 144:45–58

    MathSciNet  MATH  Google Scholar 

  2. Abgrall R, Karni S (2001) Computations of compressible multifluids. J Comput Phys 169:594–623

    MathSciNet  MATH  Google Scholar 

  3. Abgrall R, Karni S (2010) A comment on the computation of non-conservative products. J Comput Phys 229:2759–2763

    MathSciNet  MATH  Google Scholar 

  4. Abgrall R, Nkonga B, Saurel R (2003) Efficient numerical approximation of compressible multi-material flow for unstructured meshes. Comput Fluids 32:571–605

    MathSciNet  MATH  Google Scholar 

  5. Abgrall R, Saurel R (2003) Discrete equations for physical and numerical compressible multiphase mixtures. J Comput Phys 186:361–396

    MathSciNet  MATH  Google Scholar 

  6. Andrianov N, Saurel R, Warnecke G (2003) A simple method for compressible multiphase mixtures and interfaces. Int J Numer Methods Fluids 41:109–131

    MathSciNet  MATH  Google Scholar 

  7. Andrianov N, Warnecke G (2004) The Riemann problem for the Baer–Nunziato two-phase flow model. J Comput Phys 212:434–464

    MathSciNet  MATH  Google Scholar 

  8. Baer MR, Nunziato JW (1986) A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. J Multiph Flow 12:861–889

    MATH  Google Scholar 

  9. Balsara D (2004) Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys J Suppl Ser 151:149–184

    Google Scholar 

  10. Balsara D, Spicer D (1999) A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J Comput Phys 149:270–292

    MathSciNet  MATH  Google Scholar 

  11. Balsara DS, Meyer C, Dumbser M, Du H, Xu Z (2013) Efficient implementation of ader schemes for euler and magnetohydrodynamical flows on structured meshes speed comparisons with Runge–Kutta methods. J Comput Phys 235:934–969

    MathSciNet  MATH  Google Scholar 

  12. Balsara DS, Rumpf T, Dumbser M, Munz CD (2009) Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. J Comput Phys 228:2480–2516

    MathSciNet  MATH  Google Scholar 

  13. Barth TJ, Frederickson PO (1990) Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction. In: 28th aerospace sciences meeting. AIAA Paper No. 90-0013

  14. Barth TJ, Jespersen DC (1989) The design and application of upwind schemes on unstructured meshes. AIAA Paper 89-0366, pp 1–12

  15. Ben-Artzi M, Falcovitz J (1984) A second-order Godunov-type scheme for compressible fluid dynamics. J Comput Phys 55:1–32

    MathSciNet  MATH  Google Scholar 

  16. Benson DJ (1992) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99:235–394

    MathSciNet  MATH  Google Scholar 

  17. Berndt M, Breil J, Galera S, Kucharik M, Maire PH, Shashkov M (2011) Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian–Eulerian methods. J Comput Phys 230:6664–6687

    MATH  Google Scholar 

  18. Berndt M, Kucharik M, Shashkov MJ (2010) Using the feasible set method for rezoning in ALE. Proc Comput Sci 1:1879–1886

    Google Scholar 

  19. Bochev P, Ridzal D, Shashkov MJ (2013) Fast optimization-based conservative remap of scalar fields through aggregate mass transfer. J Comput Phys 246:37–57

    MathSciNet  MATH  Google Scholar 

  20. Boscheri W (2016) An efficient high order direct ALE ADER finite volume scheme with a posteriori limiting for hydrodynamics and magnetohydrodynamics. Int J Numer Methods Fluids (Submitted)

  21. Boscheri W, Balsara DS, Dumbser M (2014) Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. J Comput Phys 267:112–138

    MathSciNet  MATH  Google Scholar 

  22. Boscheri W, Dumbser M (2013) Arbitrary-Lagrangian–Eulerian one-step WENO finite volume schemes on unstructured triangular meshes. Commun Comput Phys 14:1174–1206

    MathSciNet  MATH  Google Scholar 

  23. Boscheri W, Dumbser M (2014) A direct arbitrary-Lagrangian–Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and nonconservative hyperbolic systems in 3D. J Comput Phys 275:484–523

    MathSciNet  MATH  Google Scholar 

  24. Boscheri W, Dumbser M (2016) An efficient quadrature-free formulation for high order arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes on unstructured meshes. J Sci Comput 66:240–274

    MathSciNet  MATH  Google Scholar 

  25. Boscheri W, Dumbser M (2016) High order accurate direct Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes on moving curvilinear unstructured meshes. Comput Fluids 136:48–66

    MathSciNet  MATH  Google Scholar 

  26. Boscheri W, Dumbser M, Balsara DS (2014) High order Lagrangian ADER-WENO schemes on unstructured meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics. Int J Numer Methods Fluids 76:737–778

    MATH  Google Scholar 

  27. Boscheri W, Dumbser M, Loubère R (2016) Cell centered direct Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity. Comput Fluids 134–135:111–129

    MathSciNet  Google Scholar 

  28. Boscheri W, Dumbser M, Righetti M (2013) A semi-implicit scheme for 3D free surface flows with high order velocity reconstruction on unstructured Voronoi meshes. Int J Numer Methods Fluids 72:607–631

    MathSciNet  Google Scholar 

  29. Boscheri W, Dumbser M, Zanotti O (2014) High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes. J Comput Phys 291:120–150

    MathSciNet  MATH  Google Scholar 

  30. Boscheri W, Loubère R (2016) High order accurate direct Arbitrary-Lagrangian–Eulerian ADER-MOOD finite volume schemes for non-conservative hyperbolic systems with stiff source terms. Commun Comput Phys (Accepted)

  31. Boscheri W, Loubère R, Dumbser M (2015) Direct Arbitrary-Lagrangian–Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws. J Comput Phys 292:56–87

    MathSciNet  MATH  Google Scholar 

  32. Bourgeade A, LeFloch P, Raviart PA (1989) An asymptotic expansion for the solution of the generalized riemann problem. Part II: application to the gas dynamics equations. Annales de l’institut Henri Poincaré (C) Analyse non linéaire 6:437–480

    MATH  Google Scholar 

  33. Breil J, Harribey T, Maire PH, Shashkov MJ (2013) A multi-material ReALE method with MOF interface reconstruction. Comput Fluids 83:115–125

    MathSciNet  MATH  Google Scholar 

  34. Butcher JC (1987) The numerical analysis of ordinary differential equations: Runge–Kutta and general linear methods. Wiley, New York

    MATH  Google Scholar 

  35. Caramana EJ, Burton DE, Shashkov MJ, Whalen PP (1998) The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J Comput Phys 146:227–262

    MathSciNet  MATH  Google Scholar 

  36. Caramana EJ, Rousculp CL, Burton DE (2000) A compatible, energy and symmetry preserving Lagrangian hydrodynamics algorithm in three-dimensional cartesian geometry. J Comput Phys 157:89–119

    MATH  Google Scholar 

  37. Carré G, Del Pino S, Després B, Labourasse E (2009) A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. J Comput Phys 228:5160–5183

    MathSciNet  MATH  Google Scholar 

  38. Castro CC, Toro EF (2008) Solvers for the high-order Riemann problem for hyperbolic balance laws. J Comput Phys 227:2481–2513

    MathSciNet  MATH  Google Scholar 

  39. Castro MJ, Gallardo JM, López JA, Parés C (2008) Well-balanced high order extensions of Godunov’s method for semilinear balance laws. SIAM J Numer Anal 46:1012–1039

    MathSciNet  MATH  Google Scholar 

  40. Castro MJ, Gallardo JM, Parés C (2006) High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Math Comput 75:1103–1134

    MathSciNet  MATH  Google Scholar 

  41. Castro MJ, LeFloch PG, Muñoz-Ruiz ML, Parés C (2008) Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J Comput Phys 227:8107–8129

    MathSciNet  MATH  Google Scholar 

  42. Casulli V (1990) Semi-implicit finite difference methods for the two-dimensional shallow water equations. J Comput Phys 86:56–74

    MathSciNet  MATH  Google Scholar 

  43. Casulli V, Cheng RT (1992) Semi-implicit finite difference methods for three-dimensional shallow water flow. Int J Numer Methods Fluids 15:629–648

    MATH  Google Scholar 

  44. Cesenek J, Feistauer M, Horacek J, Kucera V, Prokopova J (2013) Simulation of compressible viscous flow in time-dependent domains. Appl Math Comput 219:7139–7150

    MathSciNet  MATH  Google Scholar 

  45. Cheng J, Shu CW (2007) A high order ENO conservative Lagrangian type scheme for the compressible Euler equations. J Comput Phys 227:1567–1596

    MathSciNet  MATH  Google Scholar 

  46. Cheng J, Shu CW (2010) A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry. J Comput Phys 229:7191–7206

    MathSciNet  MATH  Google Scholar 

  47. Cheng J, Shu CW (2012) Improvement on spherical symmetry in two-dimensional cylindrical coordinates for a class of control volume Lagrangian schemes. Commun Comput Phys 11:1144–1168

    MathSciNet  Google Scholar 

  48. Cheng J, Toro EF (2013) A 1D conservative Lagrangian ADER scheme. Chin J Comput Phys 30:501–508

    Google Scholar 

  49. Clain S, Diot S, Loubère R (2011) A high-order finite volume method for systems of conservation laws—Multi-dimensional Optimal Order Detection (MOOD). J Comput Phys 230:4028–4050

    MathSciNet  MATH  Google Scholar 

  50. Claisse A, Després B, Labourasse E, Ledoux F (2012) A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes. J Comput Phys 231:4324–4354

    MathSciNet  MATH  Google Scholar 

  51. Cockburn B, Karniadakis GE, Shu CW (2000) Discontinuous Galerkin methods. In: Lecture notes in computational science and engineering. Springer, Berlin

  52. Colella P (1985) A direct Eulerian muscl scheme for gas dynamics. SIAM J Sci Stat Comput 6:104–117

    MathSciNet  MATH  Google Scholar 

  53. Dal Maso G, LeFloch PG, Murat F (1995) Definition and weak stability of nonconservative products. J Math Pures Appl 74:483–548

    MathSciNet  MATH  Google Scholar 

  54. Dedner A, Kemm F, Kröner D, Munz C-D, Schnitzer T, Wesenberg M (2002) Hyperbolic divergence cleaning for the MHD equations. J Comput Phys 175:645–673

    MathSciNet  MATH  Google Scholar 

  55. Deledicque V, Papalexandris MV (2007) An exact Riemann solver for compressible two-phase flow models containing non-conservative products. J Comput Phys 222:217–245

    MathSciNet  MATH  Google Scholar 

  56. Després B, Mazeran C (2003) Symmetrization of Lagrangian gas dynamic in dimension two and multimdimensional solvers. C R Mec 331:475–480

    MATH  Google Scholar 

  57. Després B, Mazeran C (2005) Lagrangian gas dynamics in two-dimensions and Lagrangian systems. Arch Ration Mech Anal 178:327–372

    MathSciNet  MATH  Google Scholar 

  58. Diot S, Clain S, Loubère R (2012) Improved detection criteria for the Multi-dimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order polynomials. Comput Fluids 64:43–63

    MathSciNet  MATH  Google Scholar 

  59. Diot S, Loubère R, Clain S (2013) The MOOD method in the three-dimensional case: very high-order finite volume method for hyperbolic systems. Int J Numer Methods Fluids 73:362–392

    Google Scholar 

  60. Dobrev VA, Ellis TE, Kolev Tz V, Rieben RN (2011) Curvilinear finite elements for Lagrangian hydrodynamics. Int J Numer Methods Fluids 65:1295–1310

    MathSciNet  MATH  Google Scholar 

  61. Dobrev VA, Ellis TE, Kolev TzV, Rieben RN (2012) High order curvilinear finite elements for Lagrangian hydrodynamics. SIAM J Sci Comput 34:606–641

    MathSciNet  MATH  Google Scholar 

  62. Dobrev VA, Ellis TE, Kolev Tz V, Rieben RN (2013) High order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics. Comput Fluids 83:58–69

    MathSciNet  MATH  Google Scholar 

  63. Dumbser M, Balsara DS, Abgrall R (2014) Multidimensional HLLC Riemann solver for unstructured meshes—with application to Euler and MHD flows. J Comput Phys 261:172–208

    MathSciNet  MATH  Google Scholar 

  64. Dubcova L, Feistauer M, Horacek J, Svacek P (2009) Numerical simulation of interaction between turbulent flow and a vibrating airfoil. Comput Vis Sci 12:207–225

    MathSciNet  MATH  Google Scholar 

  65. Dubiner M (1991) Spectral methods on triangles and other domains. J Sci Comput 6:345–390

    MathSciNet  MATH  Google Scholar 

  66. Dukovicz JK, Meltz B (1992) Vorticity errors in multidimensional Lagrangian codes. J Comput Phys 99:115–134

    MATH  Google Scholar 

  67. Dumbser M (2014) Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws. Comput Methods Appl Mech Eng 280:57–83

    MathSciNet  Google Scholar 

  68. Dumbser M, Balsara D, Toro EF, Munz CD (2008) A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes. J Comput Phys 227:8209–8253

    MathSciNet  MATH  Google Scholar 

  69. Dumbser M, Balsara DS, Toro EF, Munz C-D (2008) A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J Comput Phys 227:8209–8253

    MathSciNet  MATH  Google Scholar 

  70. Dumbser M, Boscheri W (2013) High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: applications to compressible multi-phase flows. Comput Fluids 86:405–432

    MathSciNet  MATH  Google Scholar 

  71. Dumbser M, Castro M, Parés C, Toro EF (2009) ADER schemes on unstructured meshes for non-conservative hyperbolic systems: applications to geophysical flows. Comput Fluids 38:1731–1748

    MathSciNet  MATH  Google Scholar 

  72. Dumbser M, Enaux C, Toro EF (2008) Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J Comput Phys 227:3971–4001

    MathSciNet  MATH  Google Scholar 

  73. Dumbser M, Hidalgo A, Castro M, Parés C, Toro EF (2010) FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems. Comput Methods Appl Mech Eng 199:625–647

    MathSciNet  MATH  Google Scholar 

  74. Dumbser M, Kaeser M, Titarev VA, Toro EF (2007) Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J Comput Phys 226:204–243

    MathSciNet  MATH  Google Scholar 

  75. Dumbser M, Käser M (2007) Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J Comput Phys 221:693–723

    MathSciNet  MATH  Google Scholar 

  76. Dumbser M, Käser M, Titarev VA, Toro EF (2007) Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J Comput Phys 226:204–243

    MathSciNet  MATH  Google Scholar 

  77. Dumbser M, Munz CD (2006) Building blocks for arbitrary high order discontinuous Galerkin schemes. J Sci Comput 27:215–230

    MathSciNet  MATH  Google Scholar 

  78. Dumbser M, Toro EF (2011) On universal Osher-type schemes for general nonlinear hyperbolic conservation laws. Commun Comput Phys 10:635–671

    MathSciNet  Google Scholar 

  79. Dumbser M, Toro EF (2011) A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems. J Sci Comput 48:70–88

    MathSciNet  MATH  Google Scholar 

  80. Dumbser M, Uuriintsetseg A, Zanotti O (2013) On Arbitrary-Lagrangian–Eulerian one-step WENO schemes for stiff hyperbolic balance laws. Commun Comput Phys 14:301–327

    MathSciNet  Google Scholar 

  81. Dumbser M, Zanotti O (2009) Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations. J Comput Phys 228:6991–7006

    MathSciNet  MATH  Google Scholar 

  82. Einfeldt B (1988) On Godunov-type methods for gas dynamics. SIAM J Numer Anal 25:294–318

    MathSciNet  MATH  Google Scholar 

  83. Einfeldt B, Munz CD, Roe PL, Sjögreen B (1991) On Godunov-type methods near low densities. J Comput Phys 92:273–295

    MathSciNet  MATH  Google Scholar 

  84. Feistauer M, Horacek J, Ruzicka M, Svacek P (2011) Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom. Comput Fluids 49:110–127

    MathSciNet  MATH  Google Scholar 

  85. Feistauer M, Kucera V, Prokopova J, Horacek J (2010) The ALE discontinuous Galerkin method for the simulation of air flow through pulsating human vocal folds. AIP Conf Proc 1281:83–86

    Google Scholar 

  86. Ferrari A (2010) SPH simulation of free surface flow over a sharp-crested weir. Adv Water Resour 33:270–276

    Google Scholar 

  87. Ferrari A, Dumbser M, Toro EF, Armanini A (2008) A new stable version of the SPH method in Lagrangian coordinates. Commun Comput Phys 4:378–404

    MathSciNet  MATH  Google Scholar 

  88. Ferrari A, Dumbser M, Toro EF, Armanini A (2009) A new 3D parallel SPH scheme for free surface flows. Comput Fluids 38:1203–1217

    MathSciNet  MATH  Google Scholar 

  89. Ferrari A, Fraccarollo L, Dumbser M, Toro EF, Armanini A (2010) Three-dimensional flow evolution after a dambreak. J Fluid Mech 663:456–477

    MathSciNet  MATH  Google Scholar 

  90. Francois MM, Shashkov MJ, Masser TO, Dendy ED (2013) A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation. Comput Fluids 83:126–136

    MathSciNet  MATH  Google Scholar 

  91. Friedrich O (1998) Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J Comput Phys 144:194–212

    MathSciNet  Google Scholar 

  92. Galera S, Maire PH, Breil J (2010) A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction. J Comput Phys 229:5755–5787

    MathSciNet  MATH  Google Scholar 

  93. Godunov SK (1959) Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics. Math USSR 47:271–306

    MATH  Google Scholar 

  94. Godunov SK (1959) Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics. Math USSR Sb 47:271–306

    MATH  Google Scholar 

  95. Harten A, Engquist B, Osher S, Chakravarthy S (1987) Uniformly high order essentially non-oscillatory schemes, III. J Comput Phys 71:231–303

    MathSciNet  MATH  Google Scholar 

  96. Harten A, Lax PD, van Leer B (1983) On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25:289–315

    MathSciNet  MATH  Google Scholar 

  97. Healy RW, Russel TF (1998) Solution of the advection–dispersion equation in two dimensions by a finite-volume Eulerian–Lagrangian localized adjoint method. Adv Water Resour 21:11–26

    Google Scholar 

  98. Hidalgo A, Dumbser M (2011) ADER schemes for nonlinear systems of stiff advection–diffusion–reaction equations. J Sci Comput 48:173–189

    MathSciNet  MATH  Google Scholar 

  99. Hirt C, Amsden A, Cook J (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14:227–253

    MATH  Google Scholar 

  100. Hu C, Shu CW (1999) Weighted essentially non-oscillatory schemes on triangular meshes. J Comput Phys 150:97–127

    MathSciNet  MATH  Google Scholar 

  101. Huang CS, Arbogast T, Qiu J (2012) An Eulerian–Lagrangian WENO finite volume scheme for advection problems. J Comput Phys 231:4028–4052

    MathSciNet  MATH  Google Scholar 

  102. Jiang GS, Shu CW (1996) Efficient implementation of weighted ENO schemes. J Comput Phys 126:202–228

    MathSciNet  MATH  Google Scholar 

  103. Kamm JR, Timmes FX (2007) On efficient generation of numerically robust sedov solutions. Technical Report LA-UR-07-2849, LANL

  104. Kapila AK, Menikoff R, Bdzil JB, Son SF, Stewart DS (2001) Two-phase modelling of DDT in granular materials: reduced equations. Phys Fluids 13:3002–3024

    MATH  Google Scholar 

  105. Karniadakis GE, Sherwin SJ (1999) Spectral/hp element methods in CFD. Oxford University Press, Oxford

    MATH  Google Scholar 

  106. Käser M, Iske A (2005) ADER schemes on adaptive triangular meshes for scalar conservation laws. J Comput Phys 205:486–508

    MathSciNet  MATH  Google Scholar 

  107. Kidder RE (1976) Laser-driven compression of hollow shells: power requirements and stability limitations. Nucl Fusion 1:3–14

    Google Scholar 

  108. Knupp PM (2000) Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated quantities. part ii - a framework for volume mesh optimization and the condition number of the Jacobian matrix. Int J Numer Methods Eng 48:1165–1185

    MATH  Google Scholar 

  109. Kucharik M, Breil J, Galera S, Maire PH, Berndt M, Shashkov MJ (2011) Hybrid remap for multi-material ALE. Comput Fluids 46:293–297

    MATH  Google Scholar 

  110. Kucharik M, Shashkov MJ (2012) One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian–Eulerian methods. J Comput Phys 231:2851–2864

    MathSciNet  MATH  Google Scholar 

  111. Kurganov A, Tadmor E (2002) Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer Methods Partial Differ Equ 18:584–608

    MathSciNet  MATH  Google Scholar 

  112. Lax PD, Wendroff B (1960) Systems of conservation laws. Commun Pure Appl Math 13:217–237

    MATH  Google Scholar 

  113. Le Floch P, Raviart PA (1988) An asymptotic expansion for the solution of the generalized Riemann problem. Part I: general theory. Annales de l’institut Henri Poincaré (C) Analyse non linéaire 5:179–207

    MATH  Google Scholar 

  114. Le Métayer O, Massoni J, Saurel R (2005) Modelling evaporation fronts with reactive Riemann solvers. J Comput Phys 205:567–610

    MathSciNet  MATH  Google Scholar 

  115. Lentine M, Grétarsson JT, Fedkiw R (2011) An unconditionally stable fully conservative semi-Lagrangian method. J Comput Phys 230:2857–2879

    MathSciNet  MATH  Google Scholar 

  116. Li Z, Yu X, Jia Z (2014) The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two dimensions. Comput Fluids 96:152–164

    MathSciNet  Google Scholar 

  117. Liska R, Shashkov MJ, Váchal P, Wendroff B (2011) Synchronized flux corrected remapping for ALE methods. Comput Fluids 46:312–317

    MathSciNet  MATH  Google Scholar 

  118. Liu W, Cheng J, Shu CW (2009) High order conservative Lagrangian schemes with Lax–Wendroff type time discretization for the compressible Euler equations. J Comput Phys 228:8872–8891

    MathSciNet  MATH  Google Scholar 

  119. López Ortega A, Scovazzi G (2011) A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian–Eulerian computations with nodal finite elements. J Comput Phys 230:6709–6741

    MathSciNet  MATH  Google Scholar 

  120. Loubère R, Dumbser M, Diot S (2014) A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws. Commun Comput Phys 16:718–763

    MathSciNet  Google Scholar 

  121. Loubère R, Maire PH, Váchal P (2010) A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver. Proc Comput Sci 1:1931–1939

    MATH  Google Scholar 

  122. Loubère R, Maire PH, Váchal P (2013) 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity. Int J Numer Methods Fluids 72:22–42

    MathSciNet  Google Scholar 

  123. Maire PH (2009) A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. J Comput Phys 228:2391–2425

    MathSciNet  MATH  Google Scholar 

  124. Maire PH (2011) A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids. Comput Fluids 46(1):341–347

    MathSciNet  MATH  Google Scholar 

  125. Maire PH (2011) A unified sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids. Int J Numer Methods Fluids 65:1281–1294

    MathSciNet  MATH  Google Scholar 

  126. Maire PH, Abgrall R, Breil J, Ovadia J (2007) A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. SIAM J Sci Comput 29:1781–1824

    MathSciNet  MATH  Google Scholar 

  127. Maire PH, Breil J (2007) A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems. Int J Numer Methods Fluids 56:1417–1423

    MATH  Google Scholar 

  128. Maire PH, Nkonga B (2009) Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics. J Comput Phys 228:799–821

    MathSciNet  MATH  Google Scholar 

  129. Millington RC, Toro EF, Nejad LAM (1999) Arbitrary high order methods for conservation laws I: the one dimensional scalar case. PhD thesis, Manchester Metropolitan University, Department of Computing and Mathematics

  130. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406

    MATH  Google Scholar 

  131. Muñoz ML, Parés C (2007) Godunov method for nonconservative hyperbolic systems. Math Model Numer Anal 41:169–185

    MathSciNet  MATH  Google Scholar 

  132. Munz CD (1994) On Godunov-type schemes for Lagrangian gas dynamics. SIAM J Numer Anal 31:17–42

    MathSciNet  MATH  Google Scholar 

  133. Murrone A, Guillard H (2005) A five equation reduced model for compressible two phase flow problems. J Comput Phys 202:664–698

    MathSciNet  MATH  Google Scholar 

  134. Noh WF (1987) Errors for calculations of strong shocks using artificial viscosity and an artificial heat flux. J Comput Phys 72:78–120

    MATH  Google Scholar 

  135. Olliver-Gooch C, Van Altena M (2002) A high-order-accurate unstructured mesh finite-volume scheme for the advection–diffusion equation. J Comput Phys 181:729–752

    MATH  Google Scholar 

  136. Osher S, Solomon F (1982) Upwind difference schemes for hyperbolic conservation laws. Math Comput 38:339–374

    MathSciNet  MATH  Google Scholar 

  137. Osher S, Solomon F (1982) Upwind difference schemes for hyperbolic systems of conservation laws. Math Comput 38:339–374

    MathSciNet  MATH  Google Scholar 

  138. Parés C (2006) Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J Numer Anal 44:300–321

    MathSciNet  MATH  Google Scholar 

  139. Parés C, Castro MJ (2004) On the well-balance property of Roe’s method for nonconservative hyperbolic systems. applications to shallow-water systems. Math Model Numer Anal 38:821–852

    MathSciNet  MATH  Google Scholar 

  140. Peery JS, Carroll DE (2000) Multi-material ALE methods in unstructured grids. Comput Methods Appl Mech Eng 187:591–619

    MathSciNet  MATH  Google Scholar 

  141. Peshkov I, Romenski E (2016) A hyperbolic model for viscous Newtonian flows. Contin Mech Thermodyn 28:85–104

    MathSciNet  MATH  Google Scholar 

  142. Petitpas F, Massoni J, Saurel R, Lapebie E, Munier L (2009) Diffuse interface model for high speed cavitating underwater systems. Int J Multiph Flow 35:747–759

    Google Scholar 

  143. Qiu JM, Shu CW (2011) Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J Comput Phys 230:863–889

    MathSciNet  MATH  Google Scholar 

  144. Rhebergen S, Bokhove O, van der Vegt JJW (2008) Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J Comput Phys 227:1887–1922

    MathSciNet  MATH  Google Scholar 

  145. Riemslagh K, Vierendeels J, Dick E (2000) An arbitrary Lagrangian–Eulerian finite-volume method for the simulation of rotary displacement pump flow. Appl Numer Math 32:419–433

    MathSciNet  MATH  Google Scholar 

  146. Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43:357–372

    MathSciNet  MATH  Google Scholar 

  147. Rusanov VV (1961) Calculation of interaction of non-steady shock waves with obstacles. J Comput Math Phys USSR 1:267–305

    Google Scholar 

  148. Sambasivan SK, Shashkov MJ, Burton DE (2013) A finite volume cell-centered Lagrangian hydrodynamics approach for solids in general unstructured grids. Int J Numer Methods Fluids 72:770–810

    MathSciNet  Google Scholar 

  149. Sambasivan SK, Shashkov MJ, Burton DE (2013) Exploration of new limiter schemes for stress tensors in Lagrangian and ALE hydrocodes. Comput Fluids 83:98–114

    MathSciNet  MATH  Google Scholar 

  150. Saurel R, Abgrall R (1999) A multiphase Godunov method for compressible multifluid and multiphase flows. J Comput Phys 150:425–467

    MathSciNet  MATH  Google Scholar 

  151. Saurel R, Gavrilyuk S, Renaud F (2003) A multiphase model with internal degrees of freedom: application to shock–bubble interaction. J Fluid Mech 495:283–321

    MathSciNet  MATH  Google Scholar 

  152. Saurel R, Larini M, Loraud JC (1994) Exact and approximate Riemann solvers for real gases. J Comput Phys 112:126–137

    MATH  Google Scholar 

  153. Saurel R, Le Métayer O, Massoni J (2005) Modelling evaporation fronts with reactive Riemann solvers. J Comput Phys 205:567–610

    MathSciNet  MATH  Google Scholar 

  154. Saurel R, Massoni J, Renaud F (2007) A numerical method for one-dimensional compressible multiphase flows on moving meshes. Int J Numer Methods Fluids 54:1425–1450

    MathSciNet  MATH  Google Scholar 

  155. Saurel R, Petitpas F, Abgrall R (2008) Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J Fluid Mech 607:313–350

    MathSciNet  MATH  Google Scholar 

  156. Saurel R, Petitpas F, Berry RA (2009) Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J Comput Phys 228:1678–1712

    MathSciNet  MATH  Google Scholar 

  157. Schwartzkopff T, Dumbser M, Munz CD (2003) Fast high order ADER schemes for linear hyperbolic equations and their numerical dissipation and dispersion. Technical Report 2003/35, Preprint series of SFB404, Stuttgart University

  158. Schwartzkopff T, Munz CD, Toro EF (2002) ADER: a high order approach for linear hyperbolic systems in 2D. J Sci Comput 17(1–4):231–240

    MathSciNet  MATH  Google Scholar 

  159. Schwendeman DW, Wahle CW, Kapila AK (2006) The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J Comput Phys 212:490–526

    MathSciNet  MATH  Google Scholar 

  160. Scovazzi G (2012) Lagrangian shock hydrodynamics on tetrahedral meshes: a stable and accurate variational multiscale approach. J Comput Phys 231:8029–8069

    MathSciNet  Google Scholar 

  161. Shi J, Hu C, Shu CW (2002) A technique of treating negative weights in WENO schemes. J Comput Phys 175:108–127

    MATH  Google Scholar 

  162. Smith RW (1999) AUSM(ALE): a geometrically conservative arbitrary Lagrangian–Eulerian flux splitting scheme. J Comput Phys 150:268–286

    MathSciNet  MATH  Google Scholar 

  163. Sonar T (1997) On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection. Comput Methods Appl Mech Eng 140:157–181

    MathSciNet  MATH  Google Scholar 

  164. Stroud AH (1971) Approximate calculation of multiple integrals. Prentice-Hall Inc., Englewood Cliffs

    MATH  Google Scholar 

  165. Tian B, Toro EF, Castro CE (2011) A path-conservative method for a five-equation model of two-phase flow with an HLLC-type Riemann solver. Comput Fluids 46:122–132

    MathSciNet  MATH  Google Scholar 

  166. Titarev VA, Toro EF (2002) ADER: arbitrary high order Godunov approach. J Sci Comput 17(1–4):609–618

    MathSciNet  MATH  Google Scholar 

  167. Titarev VA, Toro EF (2003) ADER schemes for three-dimensional nonlinear hyperbolic systems. Isaac Newton Institute for Mathematical Sciences, Cambridge (Preprint series)

    MATH  Google Scholar 

  168. Titarev VA, Toro EF (2005) ADER schemes for three-dimensional nonlinear hyperbolic systems. J Comput Phys 204:715–736

    MathSciNet  MATH  Google Scholar 

  169. Titarev VA, Tsoutsanis P, Drikakis D (2010) WENO schemes for mixed-element unstructured meshes. Commun Comput Phys 8:585–609

    MathSciNet  MATH  Google Scholar 

  170. Tokareva SA, Toro EF (2010) HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow. J Comput Phys 229:3573–3604

    MathSciNet  MATH  Google Scholar 

  171. Toro EF, Titarev VA (2006) Derivative Riemann solvers for systems of conservation laws and ADER methods. J Comput Phys 212(1):150–165

    MathSciNet  MATH  Google Scholar 

  172. Toro EF (2002) Anomalies of conservative methods: analysis, numerical evidence and possible cures. Int J Comput Fluid Dyn 11:128–143

    Google Scholar 

  173. Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer, Berlin

    MATH  Google Scholar 

  174. Toro EF, Hidalgo A, Dumbser M (2009) FORCE schemes on unstructured meshes I: conservative hyperbolic systems. J Comput Phys 228:3368–3389

    MathSciNet  MATH  Google Scholar 

  175. Toro EF, Spruce M, Speares W (1994) Restoration of contact surface in the HLL Riemann solver. Shock Waves 4:25–34

    MATH  Google Scholar 

  176. Toro EF, Titarev VA (2002) Solution of the generalized Riemann problem for advection–reaction equations. Proc R Soc Lond Ser A 458(2018):271–281

  177. Toro EF, Titarev VA (2003) ADER schemes for scalar hyperbolic conservation laws in three space dimensions. Isaac Newton Institute for Mathematical Sciences, Cambridge (Preprint series)

    MATH  Google Scholar 

  178. Toumi I (1992) A weak formulation of Roe’s approximate Riemann solver. J Comput Phys 102:360–373

    MathSciNet  MATH  Google Scholar 

  179. Tsoutsanis P, Titarev VA, Drikakis D (2011) WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions. J Comput Phys 230:1585–1601

    MathSciNet  MATH  Google Scholar 

  180. van Leer B (1979) Towards the ultimate conservative difference scheme V. A. second order sequel to Godunov’s method. J Comput Phys 32:101–136

    MATH  Google Scholar 

  181. Vilar F (2012) Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics. Comput Fluids 64:64–73

    MathSciNet  MATH  Google Scholar 

  182. Vilar F, Maire PH, Abgrall R (2014) A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids. INRIA Research Report N 8483. Available at http://hal.inria.fr/docs/00/95/07/82/PDF/RR-8483.pdf

  183. Vilar F, Maire PH, Abgrall R (2010) Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics. Comput Fluids 46(1):498–604

    MathSciNet  MATH  Google Scholar 

  184. von Neumann J, Richtmyer RD (1950) A method for the calculation of hydrodynamics shocks. J Appl Phys 21:232–237

    MathSciNet  MATH  Google Scholar 

  185. Yanilkin YV, Goncharov EA, Kolobyanin VY, Sadchikov VV, Kamm JR, Shashkov MJ, Rider WJ (2013) Multi-material pressure relaxation methods for Lagrangian hydrodynamics. Comput Fluids 83:137–143

    MathSciNet  MATH  Google Scholar 

  186. Zein A, Hantke M, Warnecke G (2010) Modeling phase transition for compressible two-phase flows applied to metastable liquids. J Comput Phys 229:2964–2998

    MathSciNet  MATH  Google Scholar 

  187. Zhang T, Zheng Y (1990) Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems. SIAM J Math Anal 21:593–630

    MathSciNet  MATH  Google Scholar 

  188. Zhang YT, Shu CW (2009) Third order WENO scheme on three dimensional tetrahedral meshes. Commun Comput Phys 5:836–848

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work discussed in this paper has been developed and carried out under the supervision of Prof. Michael Dumbser, who is warmly thanked by the author. The author would like to acknowledge PRACE for awarding access to the SuperMUC supercomputer based in Munich, Germany at the Leibniz Rechenzentrum (LRZ).

Funding

This study was funded by the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007-2013) with the research project STiMulUs, ERC Grant Agreement No. 278267

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Boscheri.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boscheri, W. High Order Direct Arbitrary-Lagrangian–Eulerian (ALE) Finite Volume Schemes for Hyperbolic Systems on Unstructured Meshes. Arch Computat Methods Eng 24, 751–801 (2017). https://doi.org/10.1007/s11831-016-9188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9188-x

Navigation