Skip to main content
Log in

Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Combining several theories this paper presents a general multiphysics framework applied to the study of coupled and active materials, considering mechanical, electric, magnetic and thermal fields. The framework is based on thermodynamic equilibrium and non-equilibrium interactions, both linked by a two-temperature model. The multi-coupled governing equations are obtained from energy, momentum and entropy balances; the total energy is the sum of thermal, mechanical and electromagnetic parts. The momentum balance considers mechanical plus electromagnetic balances; for the latter the Abraham representation using the Maxwell stress tensor is formulated. This tensor is manipulated to automatically fulfill the angular momentum balance. The entropy balance is formulated using the classical Gibbs equation for equilibrium interactions and non-equilibrium thermodynamics. For the non-linear finite element formulations, this equation requires the transformation of thermoelectric coupling and conductivities into tensorial form. The two-way thermoelastic Biot term introduces damping: thermomechanical, pyromagnetic and pyroelectric converse electromagnetic dynamic interactions. Ponderomotrix and electromagnetic forces are also considered. The governing equations are converted into a variational formulation with the resulting four-field, multi-coupled formalism implemented and validated with two custom-made finite elements in the research code FEAP. Standard first-order isoparametric eight-node elements with seven degrees of freedom (dof) per node (three displacements, voltage and magnetic scalar potentials plus two temperatures) are used. Non-linearities and dynamics are solved with Newton-Raphson and Newmark-\(\beta \) algorithms, respectively. Results of thermoelectric, thermoelastic, thermomagnetic, piezoelectric, piezomagnetic, pyroelectric, pyromagnetic and galvanomagnetic interactions are presented, including non-linear dependency on temperature and some second-order interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45

Similar content being viewed by others

References

  1. Abraham M (1910) Sull’elettrodinamica di Minkowski. Rend Circ Mat 30:33–46

    Article  Google Scholar 

  2. Allik H, Hughes TJR (1970) Finite elment method for piezoelectric vibration. Int J Numer Methods Eng 2:151–157

    Article  Google Scholar 

  3. Antonova EE, Looman DC (2005) Finite elements for thermoelectric device analysis in ANSYS. In: International conference on thermoelectrics

  4. Atulasimha J, Flatau AB (2011) A review of magnetostrictive iron–gallium alloys. Smart Mater Struct 20:1–15

    Article  Google Scholar 

  5. Ballato A (1995) Piezoelectricity: old effect, new thrusts. IEEE Trans Ultrason Ferroelectr Freq Control 42(5):916–926

    Article  Google Scholar 

  6. Baoyuan S, Jiantong W, Jun Z, Min Q (2003) A new model describing physical effects in crystals: the diagrammatic and analytic methods for macro-phenomenological theory. J Mater Process Technol 139:444–447

    Article  Google Scholar 

  7. Bargmann S, Steinmann P (2005) Finite element approaches to non-classical heat conduction in solids. Comput Model Eng Sci 9(2):133–150

    MathSciNet  MATH  Google Scholar 

  8. Bargmann S, Steinmann P (2006) Theoretical and computational aspects of non-classical thermoelasticity. Comput Methods Appl Mech Eng 196:516–527

    Article  MathSciNet  MATH  Google Scholar 

  9. Bargmann S, Steinmann P (2008) Modeling and simulation of first and second sound in solids. Int J Solids Struct 45:6067–6073

    Article  MathSciNet  MATH  Google Scholar 

  10. Barnett SM (2010) Resolution of the Abraham–Minkowski dilemma. Phys Rev Lett 104:070401

    Article  Google Scholar 

  11. Benbouzid MH, Meunier G, Meunier G (1995) Dynamic modelling of giant magnetostriction in Terfenol-D rods by the finite element method. IEEE Trans Magn 31(3):1821–1824

    Article  Google Scholar 

  12. Benbouzid MH, Reyne G, Meunier G (1993) Nonlinear finite element modelling of giant magnetostriction. IEEE Trans Magn 29(6):2467–2469

    Article  Google Scholar 

  13. Benbouzid MH, Reyne G, Meunier G (1995) Finite elment modelling of magnetostrictive devices: investigations for the design of the magnetic circuit. IEEE Trans Magn 31(3):1813–1816

    Article  Google Scholar 

  14. Besbes M, Ren Z, Razek A (1996) Finite element analysis of magneto-mechanical coupled phenomena in magnetostrictive materials. IEEE Trans Magn 32(3):1058–1061

    Article  Google Scholar 

  15. Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27(3):240–253

    Article  MathSciNet  MATH  Google Scholar 

  16. Bisio G, Cartesegna M, Rubatto G (2001) Thermodynamic analysis of elastic systems. Energy Convers Manag 42:799–812

    Article  Google Scholar 

  17. Blun SL (1974) Materials for radiation detection. National Academy of Sciences, Washington

    Google Scholar 

  18. Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  19. Borovik-Romanov AS (1960) Piezomagnetism in the antiferromagnetic fluorides of cobalt and manganese. Sov Phys 11:786

    Google Scholar 

  20. Bowyer P (2005) The momentum of light in media: the Abraham–Minkowski controversy. http://bit.ly/1M7wyAT

  21. Brauer JR, Ruehl JJ, MacNeal BE, Hirtenfelder F (1995) Finite element analysis of Hall effect and magnetoresistance. IEEE Trans Electron Devices 42(2):328–333

    Article  Google Scholar 

  22. Bustamante R, Dorfmann A, Ogden RW (2009) On electric body forces and Maxwell stresses in nonlinearly electroelastic solids. Int J Eng Sci 47:1131–1141

    Article  MathSciNet  MATH  Google Scholar 

  23. Callen HB (1948) The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys Rev 73(11):1349–1358

    Article  MATH  Google Scholar 

  24. Callen HB (1985) Thermodynamics and an introduction to thermostatistics. Wiley, New York

    MATH  Google Scholar 

  25. Carter JP, Booker JR (1989) Finite element analysis of coupled thermoelasticity. Comput Struct 31(1):73–80

    Article  Google Scholar 

  26. Cattaneo C (1938) Sulla conduzione del calore. Atti Semin Mat Fis Univ Modena 3:83–1013

    MathSciNet  MATH  Google Scholar 

  27. Chaplik AV (2000) Some exact solutions for the classical Hall effect in an inhomogeneous magnetic field. JETP Lett 72:503

    Article  Google Scholar 

  28. Chen PJ, Gurtin ME (1968) On a theory of heat conduction involving two temperatures. J Z Angew Math Phys ZAMP 19(4):614–627

    Article  MATH  Google Scholar 

  29. Chu LJ, Haus HA, Penfield P (1966) The force density in polarizable and magnetizable fluids. In: Proceedings of the IEEE

  30. Clin Th, Turenne S, Vasilevskiy D, Masut RA (2009) Numerical simulation of the thermomechanical behavior of extruded bismuth telluride alloy module. J Electron Mater 38(7):994–1001

    Article  Google Scholar 

  31. Coleman BD (1964) Thermodynamics of materials with memory. Arch Ration Mech Anal 17:1–46

    MathSciNet  Google Scholar 

  32. de Groot SR (1961) Non-equilibrium themodynamics of systems in an electromagnetic field. J Nucl Energy C Plasma Phys 2:188–194

    Article  Google Scholar 

  33. de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover, Mineola

    MATH  Google Scholar 

  34. Debye P (1913) On the theory of anomalous dispersion in the region of long-wave electromagnetic radiation. Verh dtsch phys Ges 15:777–793

  35. del Castillo LF, García-Colín LS (1986) Thermodynamic basis for dielectric relaxation in complex materials. Phys Rev B 33(7):4944–4951

    Article  Google Scholar 

  36. Delves RT (1964) Figure of merit for Ettingshausen cooling. Br J Appl Phys 15:105–106

    Article  Google Scholar 

  37. Dorf RC (1997) The electrical engineering handbook. CRC Press, UK

    MATH  Google Scholar 

  38. Earle R, Richards JFC (1956) Theophrastus: on stones. Ohio State University, Columbus

    Google Scholar 

  39. Ebling D, Jaegle M, Bartel M, Jacquot A, Bottner H (2009) Multiphysics simulation of thermoelectric systems for comparison with experimental device performance. J Electron Mater 38(7):1456–1461

    Article  Google Scholar 

  40. El-Karamany AS, Ezzat MA (2011) On the two-temperature Green–Naghdi thermoelasticity theories. J Therm Stress 34:1207–1226

    Article  Google Scholar 

  41. Eringen AC (1980) Mechanics of continua. Robert E Krieger, Malabar

    MATH  Google Scholar 

  42. Eringen AC, Maugin GA (1990) Electrodynamics of continua I. Springer, New York

    Book  Google Scholar 

  43. Ersoy Y (1984) A new nonlinear constitutive theory for conducting magnetothermoelastic solids. Int J Eng Sci 22(6):683–705

    Article  MathSciNet  MATH  Google Scholar 

  44. Ersoy Y (1986) A new nonlinear constitutive theory of electric and heat conductions for magnetoelastothermo-electrical anisotropic solids. Int J Eng Sci 24(6):867–882

    Article  MathSciNet  MATH  Google Scholar 

  45. Ferrari A, Mittica A (2013) Thermodynamic formulation of the constitutive equations for solids and fluids. Energy Convers Manag 66:77–86

    Article  Google Scholar 

  46. Galushko D, Ermakov N, Karpovski M, Palevski A, Ishay JS, Bergman DJ (2005) Electrical, thermoelectric and thermophysical properties of hornet cuticle. Semicond Sci Technol 20:286–289

    Article  Google Scholar 

  47. Gao JL, Du QG, Zhang XD, Jiang XQ (2011) Thermal stress analysis and structure parameter selection for a Bi2Te3-based thermoelectric module. J Electron Mater 40(5):884–888

    Article  Google Scholar 

  48. Gaudenzi P, Bathe KJ (1995) An iterative finite element procedure for the analysis of piezoelectric continua. J Intell Mater Syst Struct 6:266–273

    Article  Google Scholar 

  49. Gavela D, Pérez-Aparicio JL (1998) Peltier pellet analysis with a coupled, non-linear 3D finite element model. In: 4th European workshop on thermoelectrics

  50. Goudreau GL, Taylor RL (1972) Evaluation of numerical integration methods in elastodynamics. Comput Methods Appl Mech Eng 2:69–97

    Article  MathSciNet  MATH  Google Scholar 

  51. Griffiths DJ (1999) Introduction to electrodynamics. Prentice-Hall Inc, Upper Saddle River

    Google Scholar 

  52. Gros L, Reyne G, Body C, Meunier G (1998) Strong coupling magneto mechanical methods applied to model heavy magnetostrictive actuators. IEEE Trans Magn 34(5):3150–3153

    Article  Google Scholar 

  53. Gurtin ME, Williams WO (1966) On the Clausius–Duhem inequality. J Z Angew Math Phys ZAMP 17(5):626–633

    Article  Google Scholar 

  54. Hamader VM, Patil TA, Chovan SH (1987) Free vibration response of two-dimensional magneto-electro-elastic laminated plates. Build Mater Sci 9:249–253

    Article  Google Scholar 

  55. Hausler C, Milde G, Balke H, Bahr HA, Gerlach G (2001) 3-D modeling of pyroelectric sensor arrays part I: multiphysics finite-element simulation. IEEE Sens J 8(12):2080–2087

    Article  Google Scholar 

  56. He Y (2004) Heat capacity, thermal conductivity and thermal expansion of barium titanate-based ceramics. Thermochimica 419:135–141

    Article  Google Scholar 

  57. Hernández-Lemus E, Orgaz E (2002) Hysteresis in nonequilibrium steady states: the role of dissipative couplings. Rev Mex Fís 48:38–45

    Google Scholar 

  58. Hinds EA (2009) Momentum exchange between light and a single atom: Abraham or Minkowski? Phys Rev Lett 102:050403

    Article  Google Scholar 

  59. Hirsinger L, Billardon R (1995) Magneto-elastic finite element analysis including magnetic forces and magnetostriction effects. IEEE Trans Magn 31(3):1877–1880

    Article  Google Scholar 

  60. Huang MJ, Chou PK, Lin MC (2008) An investigation of the thermal stresses induced in a thin-film thermoelectric cooler. J Therm Stress 31:438–454

    Article  Google Scholar 

  61. IEEE Standards Board (1988) IEEE standard on piezoelectricity. ANSI/IEEE Std 176-1987. doi:10.1109/IEEESTD.1988.79638

  62. IEEE Standards Board (1991) IEEE standard on magnetostrictive materials: piezomagnetic nomenclature. IEEE Std 319-1990. doi:10.1109/IEEESTD.1991.101048

  63. Ioffe Institute (2013) INSb—indium antimonide. Ioffe Institute. www.ioffe.rssi.ru/SVA/NSM/Semicond/InSb/index.html

  64. Jackson JD (1962) Classical electrodynamics. Wiley, New York

    MATH  Google Scholar 

  65. Jaegle M (2008) Multiphysics simulation of thermoelectric systems—modeling of Peltier—cooling and thermoelectric generation. In: Proceedings of the COMSOL

  66. Jaegle M, Bartel M, Ebling D, Jacquot A, Bottner H (2008) Multiphysics simulation of thermoelectric systems. In: European conference on thermoelectrics ECT2008

  67. Jiménez JL, Campos I (1996) Advanced electromagnetism: foundations, theory and applications, chapter The balance equations of energy and momentum in classical electrodynamics. World Scientific Publishing, Singapore

  68. Johnstone S (2008) Is there potential for use of the Hall effect in analytical science? Analyst 133:293–296

    Article  Google Scholar 

  69. Jou D, Lebon G (1996) Extended irreversible thermodynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  70. Kaltenbacher M, Kaltenbacher B, Hegewald T, Lerch R (2010) Finite element formulation for ferroelectric hysteresis of piezoelectric materials. J Intell Mater Syst Struct 21:773–785

    Article  Google Scholar 

  71. Kaltenbacher M, Meiler M, Ertl M (2009) Physical modeling and numerical computation of magnetostriction. Int J Comput Math Electr Electron Eng 28(4):819–832

    Article  MathSciNet  MATH  Google Scholar 

  72. Kamlah M, Bohle U (2001) Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int J Solids Struct 38:605–633

    Article  MATH  Google Scholar 

  73. Kannan KS, Dasgupta A (1997) A nonlinear Galerkin finite-element theory for modeling magnetostrictive smart structures. Smart Mater Struct 6:341–350

    Article  Google Scholar 

  74. Kiang J, Tong L (2010) Nonlinear magneto-mechanical finite element analysis of Ni–Mn–Ga single crystals. Smart Mater Struct 19:1–17

    Article  Google Scholar 

  75. Kinsler P, Favaro A, McCall MW (2009) Four Poynting theorems. Eur J Phys 30:983–993

    Article  MathSciNet  MATH  Google Scholar 

  76. Klinckel S, Linnemann K (2008) A phenomenological constitutive model for magnetostrictive materials and ferroelectric ceramics. Proc Appl Math Mech 8:10507–10508

    Article  Google Scholar 

  77. Kosmeier D (2013) Hornets: Gentle Giants! Wikipedia: the free encyclopedia. www.hornissenschutz.de/hornets.htm

  78. Lahmer T (2008) Forward and inverse problems in piezoelectricity. PhD thesis, Universität Erlangen-Nürnberg

  79. Landau LD, Lifshitz EM (1982) Mechanics. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  80. Landau LD, Lifshitz EM (1984) Electrodynamics of continuous media. Pergamon Press, Oxford

    MATH  Google Scholar 

  81. Landis CM (2002) A new finite-element formulation for electromechanical boundary value problems. Int J Numer Methods Eng 55:613–628

    Article  MATH  Google Scholar 

  82. Díaz Lantada A (2011) Handbook of active materials for medical devices: advances and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  83. Lebon G, Jou D, Casas-Vázquez J (2008) Understanding non-equilibrium thermodynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  84. Linnemann K, Klinkel S (2006) A constitutive model for magnetostrictive materials—theory and finite element implementation. Proc Appl Math Mech 6:393–394

    Article  Google Scholar 

  85. Linnemann K, Klinkel S, Wagner W (2009) A constitutive model for magnetostrictive and piezoelectric materials. Int J Solids Struct 46:1149–1166

    Article  MATH  Google Scholar 

  86. Llebot JE, Jou D, Casas-Vázquez J (1983) A thermodynamic approach to heat and electric conduction in solids. Physica 121(A):552–562

    Article  Google Scholar 

  87. Lu X, Hanagud V (2004) Extended irreversible thermodynamics modeling for self-heating and dissipation in piezoelectric ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 51(12):1582–1592

    Article  Google Scholar 

  88. Lubarda VA (2004) On thermodynamic potentials in linear thermoelasticity. Int J Solids Struct 41:7377–7398

    Article  MATH  Google Scholar 

  89. Mansuripur M (2012) Trouble with the lorentz law of force: incompatibility with special relativity and momentum conservation. Phys Rev Lett 108:193901

    Article  Google Scholar 

  90. Maruszewski B, Lebon G (1986) An extended irreversible thermodynamic description of electrothermoelastic semiconductors. Int J Eng Sci 24(4):583–593

    Article  MATH  Google Scholar 

  91. McMeeking RM, Landis CM (2005) Electrostatic forces and stored energy for deformable dielectric materials. J Appl Mech 72:581–590

    Article  MATH  Google Scholar 

  92. McMeeking RM, Landis CM, Jimenez MA (2007) A principle of virtual work for combined electrostatic and mechanical loading of materials. Int J Non Linear Mech 42:831–838

    Article  Google Scholar 

  93. MELCOR (2000) Thermoelectric handbook. Melcor, a unit of Laird Technologies. http://www.lairdtech.com

  94. Minkowski H (1908) Nachr. ges. wiss. Gottingen 53

  95. Naranjo B, Gimzewski JK, Putterman S (2005) Observation of nuclear fusion driven by a pyroelectric crystal. Nature 28(434):1115–1117

    Article  Google Scholar 

  96. Nédélec JC (1980) Mixed finite elements in \({R}^3\). Numer Math 35:314–345

    Article  MathSciNet  Google Scholar 

  97. Nettleton RE, Sobolev SL (1995) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part I. approaches and scalar rate processes. J Non-Equilib Thermodyn 20:205–229

    MATH  Google Scholar 

  98. Nettleton RE, Sobolev SL (1995) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part II. vector transport processes, shear relaxation and rheology. J Non-Equilib Thermodyn 20:297–331

    Google Scholar 

  99. Nettleton RE, Sobolev SL (1996) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part III. wave phenomena. J Non-Equilib Thermodyn 21:1–16

    Article  MATH  Google Scholar 

  100. Newmark N (1959) A method of computation for structural dynamics. ASCE J Eng Mech 85:67–94

    Google Scholar 

  101. Newnham RE (2005) Properties of materials: anisotropy, symmetry, structure. Oxford University Press, Oxford

    Google Scholar 

  102. Nour AE, Abd-Alla N, Maugin GA (1990) Nonlinear equations for thermoelastic magnetizable conductors. Int J Eng Sci 27(7):589–603

    MathSciNet  MATH  Google Scholar 

  103. Nowacki A (1962) International series of monographs in aeronautics and astronautics. Pergamon Press, Oxford

    Google Scholar 

  104. Okumura H, Hasegawa Y, Nakamura H, Yamaguchi S (1999) A computational model of thermoelectric and thermomagnetic semiconductors. In: 18th international conference on thermoelectrics

  105. Okumura H, Yamaguchi S, Nakamura H, Ikeda K, Sawada K (1998) Numerical computation of thermoelectric and thermomagnetic effects. In: 17th international conference on thermoelectrics

  106. Oliver X, Agelet C (2000) Continuum mechanics for engineers. Edicions UPC, Barcelona. http://hdl.handle.net/2099.3/36197

  107. Shankar K, Kondaiah P, Ganesan N (2013) Pyroelectric and pyromagnetic effects on multiphase magneto-electro-elastic cylindrical shells for axisymmetric temperature. Smart Mater Struct 22(2):025007

    Article  Google Scholar 

  108. Palma R, Pérez-Aparicio JL, Bravo R (2013) Study of hysteretic thermoelectric behavior in photovoltaic materials using the finite element method, extended thermodynamics and inverse problems. Energy Convers Manag 65:557–563

    Article  Google Scholar 

  109. Palma R, Pérez-Aparicio JL, Taylor RL (2012) Non-linear finite element formulation applied to thermoelectric materials under hyperbolic heat conduction model. Comput Method Appl Mech Eng 213–216:93–103

    Article  MathSciNet  MATH  Google Scholar 

  110. Palma R, Rus G, Gallego R (2009) Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics. Mech Mater 41:1000–1016

    Article  Google Scholar 

  111. Pérez-Aparicio JL, Gavela D (1998) 3D, non-linear coupled, finite element model of thermoelectricity. In: 4th European workshop on thermoelectrics

  112. Pérez-Aparicio JL, Palma R, Taylor RL (2012) Finite element analysis and material sensitivity of Peltier thermoelectric cells coolers. Int J Heat Mass Transf 55:1363–1374

    Article  MATH  Google Scholar 

  113. Pérez-Aparicio JL, Sosa H (2004) A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials. Smart Mater Struct 13:493–502

    Article  Google Scholar 

  114. Perez-Aparicio JL, Sosa H, Palma R (2007) Numerical investigations of field-defect interactions in piezoelectric ceramics. Int J Solids Struct 44:4892–4908

    Article  MATH  Google Scholar 

  115. Pérez-Aparicio JL, Taylor RL, Gavela D (2007) Finite element analysis of nonlinear fully coupled thermoelectric materials. Comput Mech 40:35–45

    Article  MATH  Google Scholar 

  116. Qi H, Fang D, Yao Z (1997) FEM analysis of electro-mechanical coupling effect of piezoelectric materials. Comput Mater Sci 8:283–290

    Article  Google Scholar 

  117. Pérez-Aparicio JL, Palma R, Abouali-Sánchez S (2014) Complete finite element method analysis of galvanomagnetic and thermomagnetic effects. Appl Therm Eng (submitted)

  118. Perez-Aparicio JL, Palma R, Moreno-Navarro P (2014) Elasto-thermoelectric non-linear, fully coupled, and dynamic finite element analysis of pulsed thermoelectrics. Appl Therm Eng (submitted)

  119. Ramírez F, Heyliger PR, Pan E (2006) Free vibration response of two-dimensional magneto-electro-elastic laminated plates. J Sound Vib 292:626–644

    Article  Google Scholar 

  120. Reitz JR, Milford FJ (1960) Foundations of electromagnetic theory. Addison-Wesley, Boston

    MATH  Google Scholar 

  121. Reng Z, Ionescu B, Besbes M, Razek A (1995) Calculation of mechanical deformation of magnetic materials in electromagnetic devices. IEEE Trans Magn 31(3):1873–1876

    Article  Google Scholar 

  122. Restuccia L (2010) On a thermodynamic theory for magnetic relaxation phenomena due to n microscopic phenomena described by n internal variables. J Non-Equilib Thermodyn 35:379–413

    Article  MATH  Google Scholar 

  123. Restuccia L, Kluitenberg GA (1988) On generalizations of the Debye equation for dielectric relaxation. Phys A 154:157–182

    Article  Google Scholar 

  124. Restuccia L, Kluitenberg GA (1992) On the heat dissipation function for dielectric relaxation phenomena in anisotropic media. Int J Eng Sci 30(3):305–315

    Article  MathSciNet  Google Scholar 

  125. Riffat SB, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23:913–935

    Article  Google Scholar 

  126. Rinaldi C, Brenner H (2002) Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress? Phys Rev E 65:036615

    Article  MathSciNet  Google Scholar 

  127. Rowe DM (ed) (1995) CRC handbook of thermoelectrics. CRC Press, UK

    Google Scholar 

  128. Rus G, Palma R, Pérez-Aparicio JL (2009) Optimal measurement setup for damage detection in piezoelectric plates. Int J Eng Sci 47:554–572

    Article  Google Scholar 

  129. Rus G, Palma R, Pérez-Aparicio JL (2012) Experimental design of dynamic model-based damage identification in piezoelectric ceramics. Mech Syst Signal Process 26:268–293

    Article  Google Scholar 

  130. Sadiku MNO (2001) Numerical techniques in electromagnetics. CRC Press LLC, Boca Raton

    MATH  Google Scholar 

  131. Semenov AS, Kessler H, Liskowsky A, Balke H (2006) On a vector potential formulation for 3D electromechanical finite element analysis. Commun Numer Methods Eng 22:357–375

    Article  MathSciNet  MATH  Google Scholar 

  132. Serra E, Bonaldi M (2008) A finite element formulation for thermoelastic damping analysis. Int J Numer Methods Eng 78(6):671–691

    Article  MathSciNet  MATH  Google Scholar 

  133. Several. Wikipedia. Wikipedia: The Free Encyclopedia, Several

  134. Soh AK, Liu JX (2005) On the constitutive equations of magnetoelectroelastic solids. J Intell Mater Syst Struct 16:597–602

    Article  Google Scholar 

  135. Stefanescu DM (2011) Handbook of force transducers: principles and components. Springer, Berlin

    Book  Google Scholar 

  136. Tamma KK, Namburu RR (1992) An effective finite element modeling/analysis approach for dynamic thermoelasticity due to second sound effects. Comput Mech 9:73–84

    Article  MATH  Google Scholar 

  137. Tang T, Yu W (2009) Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method. Smart Mater Struct 18:1–14

    Article  Google Scholar 

  138. Taylor RL (2010) FEAP a finite element analysis program: user manual. University of California, Berkeley. http://www.ce.berkeley.edu/feap

  139. Thurston RN (1994) Warren p. Mason (1900–1986) physicist, engineer, inventor, author, teacher. IEEE Trans Ultrason Ferroelectr Freq Control 41(4):425–434

    Article  Google Scholar 

  140. Tian X, Shen Y, Chen C, He T (2006) A direct finite element method study of generalized thermoelastic problems. Int J Solids Struct 43:2050–2063

    Article  MATH  Google Scholar 

  141. Tinder RF (2008) Tensor properties of solids: phenomenological development of the tensor properties of crystals. Morgan and Claypool, San Rafael

    Google Scholar 

  142. Truesdell C (1968) Thermodynamics for beginners, in irreversible aspects of continuum mechanics. Springer, Berlin

    Google Scholar 

  143. Tzou HS, Ye R (1996) Pyroelectric and thermal strain effects of piezoelectric (PVDF and PZT) devices. Mech Syst Signal Process 10(4):459–469

    Article  Google Scholar 

  144. Walser R (1972) Application of pyromagnetic phenomena to radiation detection. IEEE Trans Magn 8(3):619

    Article  Google Scholar 

  145. Woodbridge K, Ertl ME (1978) Pulsed Ettingshausen cooling in bismuth. J Phys F Met Phys 8(9):1941–1945

    Article  Google Scholar 

  146. Yan R, Wang B, Yang Q, Liu F, Cao S, Huang W (2004) A numerical model of displacement for giant magnetostrictive actuator. IEEE Trans Magn 14(2):1914–1917

    Google Scholar 

  147. Yoo B, Hirano M, Hirata K (2008) Fully coupled electro-magneto-mechanical analysis method of magnetostrictive actuator using 3D finite element method. In: Proceedings of the 2008 international conference on electrical machines

  148. Youssef HM (2006) Theory of two-temperature-generalized thermoelasticity. IMA J Appl Math 71:383–390

    Article  MathSciNet  MATH  Google Scholar 

  149. Youssef HM (2011) Theory of two-temperature-generalized thermoelasticity without energy dissipation. J Therm Stress 34:138–146

    Article  Google Scholar 

  150. Yu N, Imatani S, Inoue T (2006) Hyperbolic thermoelastic analysis due to pulsed heat input by numerical solution. JSME Int J Ser A 49(2):180–187

    Article  Google Scholar 

  151. Zeng X, Rajapakse RKND (2004) Effects of remanent field on an elliptical flaw and a crack in a poled piezoelectric ceramic. Comput Mater Sci 30:433–440

    Article  Google Scholar 

  152. Zhou L, Tang DW, Araki N (2006) Coupled finite element analysis of generalized thermoelasticity in semi-infinite medium. JSME Int J Ser A 49(2):195–200

    Article  Google Scholar 

  153. Zienkiewicz OC, Taylor RL, Zhu JZ (2013) The finite element method: the basis, 7th edn. Elsevier Butterworth-Heinemann, Amsterdam

    MATH  Google Scholar 

Download references

Acknowledgments

This research was partially supported by grants CSD2008-00037 Canfranc Underground Physics, Polytechnic University of Valencia under programs PAID 02-11-1828 and 05-10-2674. The first author used the grant Generalitat Valenciana BEST/2014/232 for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Pérez-Aparicio.

Appendices

Appendix 1

The EI derivatives in (72) to (74) have to be explicitly calculated and are listed in the first part of this appendix.

First, the derivatives of the Cauchy stress tensor from (72) are

$$\begin{aligned} \frac{\partial {\varvec{T}}^{_C}}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}} &= {\mathbf {C}}\,{{\varvec{\mathcal {B}}}}^{s}_{b} ;\quad \frac{\partial {\varvec{T}}^{_C}}{\partial {{\mathsf{a}}}_{b}^{_{V}}} = {\varvec{e}}^{_V}{^\top }\,{{\varvec{\mathcal {B}}}}^{}_{b} ; \\ \frac{\partial {\varvec{T}}^{_C}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}} &= {\varvec{e}}^\varphi {^\top }\,{{\varvec{\mathcal {B}}}}^{}_{b} ;\quad \frac{\partial {\varvec{T}}^{_C}}{\partial {{\mathsf{a}}}_{b}^{_{T^e}}} = -\varvec{\beta }\,{\mathcal{N}}_{b} \end{aligned}$$

The first equation is a \(6\times 3\) matrix; the second to fourth are directly \(6\times 1\) vectors.

The derivatives of the symmetric part of the Maxwell stress tensor from the same stiffnesses are

$$\begin{aligned} \frac{\partial {\varvec{T}}^{_M}_s}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}}&= - \frac{1}{2}\, \left \{ \left [ \frac{\partial {\varvec{D}}}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} + \left ( \frac{\partial {\varvec{D}}}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} \right )^{\top } \right ]\,{{\mathsf{a}}}_{b}^{_{V}} \right.\\&\left.\quad+\, \left [ \frac{\partial {\varvec{B}}}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} + \left ( \frac{\partial {\varvec{B}}}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} \right )^{\top }\right ]\,{{\mathsf{a}}}_{b}^{_{\varphi }} \right \}\\ \frac{\partial {{\varvec{T}}^{_M}}_s}{\partial {{\mathsf{a}}}_{b}^{_{V}}}&= - \frac{1}{2}\, \left\{ \left [ \frac{\partial {\varvec{D}}}{\partial {{\mathsf{a}}}_{b}^{_{V}}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} + \left ( \frac{\partial {\varvec{D}}}{\partial {{\mathsf{a}}}_{b}^{_{V}}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} \right )^{\top }\right ]\,{{\mathsf{a}}}_{b}^{_{V}}\right. \\&\left.\quad+\, \left [ \frac{\partial {\varvec{B}}}{\partial {{\mathsf{a}}}_{b}^{_{V}}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} + \left ( \frac{\partial {\varvec{B}}}{\partial {{\mathsf{a}}}_{b}^{_{V}}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} \right )^{\top }\right ]\,{{\mathsf{a}}}_{b}^{_{\varphi }}\right. \\&\left.\quad +\, {\varvec{D}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} +({\varvec{D}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b})^\top +2\,\epsilon_0\,{{\mathsf{a}}}_{b}^{_{V}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b}\,{{\varvec{\mathcal {B}}}}^{}_{b}\,{\varvec{I}}\;\;\right\} \\ \frac{\partial {\varvec{T}}^{_M}_s}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}}&= - \frac{1}{2}\, \left \{ \left [ \frac{\partial {\varvec{D}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} + \left ( \frac{\partial {\varvec{D}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} \right )^{\top }\right ]\,{{\mathsf{a}}}_{b}^{_{V}} \right.\\&\left.\quad+\, \left [ \frac{\partial {\varvec{B}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} + \left ( \frac{\partial {\varvec{B}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} \right )^{\top }\right ]\,{{\mathsf{a}}}_{b}^{_{\varphi }} \right.\\&\left.\quad+\, {\varvec{B}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} + ({\varvec{B}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b})^\top +2\,\mu_0\,{{\mathsf{a}}}_{b}^{_{\varphi }}\,{{\varvec{\mathcal {B}}}}^{\top }_{b}\,{{\varvec{\mathcal {B}}}}^{}_{b}\,{\varvec{I}}\right \}\\ \frac{\partial {\varvec{T}}^{_M}_s}{\partial {{\mathsf{a}}}_{b}^{_{T^e}}}&= - \frac{1}{2}\, \left \{ \left [ \frac{\partial {\varvec{D}}}{\partial {{\mathsf{a}}}_{b}^{_{T^e}}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} + \left ( \frac{\partial {\varvec{D}}}{\partial {{\mathsf{a}}}_{b}^{_{T^e}}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} \right )^{\top }\right ]\,{{\mathsf{a}}}_{b}^{_{V}} \right.\\&\left.\quad+\, \left [ \frac{\partial {\varvec{B}}}{\partial {{\mathsf{a}}}_{b}^{_{T^e}}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} + \left ( \frac{\partial {\varvec{B}}}{\partial {{\mathsf{a}}}_{b}^{_{T^e}}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} \right )^{\top }\right ]\,{{\mathsf{a}}}_{b}^{_{\varphi }} \;\;\right \} \end{aligned}$$

The first equation cannot directly follow the matrix multiplication convection, as \(\partial {\varvec{T}}^{_M}_s/\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}\) in (72) must be interpreted as a 6 \(\times \) 3 matrix composed of three 6 \(\times \) 1 vectors.

$$\begin{aligned} \frac{\partial {\varvec{T}}^{_M}_s}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}} \equiv \left[ \frac{\partial {\varvec{T}}^{_M}_s}{\partial {\mathsf{a}}^{_U}_{b1}},\quad \frac{\partial {\varvec{T}}^{_M}_s}{\partial {\mathsf{a}}^{_U}_{b2}},\quad \frac{\partial {\varvec{T}}^{_M}_s}{\partial {\mathsf{a}}^{_U}_{b3}} \right] \end{aligned}$$

Therefore, in the right hand side the derivatives of \({\varvec{D}}\), \({\varvec{B}}\) are also with respect to each mechanical dof with a resultant dimension of 3 \(\times \) 3, giving one of the components of the previous expression to be converted into the 6 \(\times \) 1 Voigt notation. For instance, for the second mechanical dof, the result is

$$\begin{aligned} \frac{\partial {\varvec{T}}^{_M}_s}{\partial {\mathsf{a}}^{_U}_{b2}}&= {} -\left ( \frac{\partial {\varvec{D}}}{\partial {\mathsf{a}}^{_U}_{b2}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} + {{\varvec{\mathcal {B}}}}^{}_{b}\, \frac{\partial {\varvec{D}}^\top }{\partial {\mathsf{a}}^{_U}_{b2}} \right )\, \frac{{{\mathsf{a}}}_{b}^{_{V}}}{2} \\&\quad-\,\left ( \frac{\partial {\varvec{B}}}{\partial {\mathsf{a}}^{_U}_{b2}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} + {{\varvec{\mathcal {B}}}}^{}_{b}\, \frac{\partial {\varvec{B}}^\top }{\partial {\mathsf{a}}^{_U}_{b2}} \right )\, \frac{{{\mathsf{a}}}_{b}^{_{\varphi }}}{2} \end{aligned}$$

The rest of the Maxwell tensor derivatives are directly 3 \(\times \) 3 matrices.

Again for (72), using the third of (71) the derivatives of the ponderomotive forces are

$$\begin{aligned} \frac{\partial {\varvec{f}}^{_{PM}}}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}}&= {} \dot{{\varvec{P}}}_{\times }\, \frac{\partial {\varvec{B}}}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}} + \frac{\partial {\varvec{P}}_{\times }}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}}\,\dot{{\varvec{B}}}+\epsilon_0\mu_0\, \frac{\partial {\varvec{M}}_{\times }}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}}\,{{\varvec{\mathcal {B}}}}^{}_{b}\,\dot{{\mathsf{a}}}_{b}^{_{V}} \\ \frac{\partial {\varvec{f}}^{_{PM}}}{\partial {{\mathsf{a}}}_{b}^{_{V}}}&= {} \dot{{\varvec{P}}}_{\times }\, \frac{\partial {\varvec{B}}}{\partial {{\mathsf{a}}}_{b}^{_{V}}} + \frac{\partial {\varvec{P}}_{\times }}{\partial {{\mathsf{a}}}_{b}^{_{V}}}\,\dot{{\varvec{B}}}+\epsilon_0\mu_0\left( \dot{{\varvec{M}}}_{\times } + \frac{\partial {\varvec{M}}_{\times }}{\partial {{\mathsf{a}}}_{b}^{_{V}}} \dot{{\mathsf{a}}}_{b}^{_{V}} \right) {{\varvec{\mathcal {B}}}}^{}_{b} \\ \frac{\partial {\varvec{f}}^{_{PM}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}}&= {} \dot{{\varvec{P}}}_{\times }\, \frac{\partial {\varvec{B}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}} + \frac{\partial {\varvec{P}}_{\times }}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}}\,\dot{{\varvec{B}}}+\epsilon_0\mu_0\, \frac{\partial {\varvec{M}}_{\times }}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}} \,{{\varvec{\mathcal {B}}}}^{}_{b}\,\dot{{\mathsf{a}}}_{b}^{_{V}} \\ \frac{\partial {\varvec{f}}^{_{PM}}}{\partial {{\mathsf{a}}}_{b}^{_{T^e}}}&= {} \dot{{\varvec{P}}}_{\times }\, \frac{\partial {\varvec{B}}}{\partial {{\mathsf{a}}}_{b}^{_{T^e}}} + \frac{\partial {\varvec{P}}_{\times }}{\partial {{\mathsf{a}}}_{b}^{_{T^e}}}\,\dot{{\varvec{B}}}+\epsilon_0\mu_0\, \frac{\partial {\varvec{M}}_{\times }}{\partial {{\mathsf{a}}}_{b}^{_{T^e}}}\,{{\varvec{\mathcal {B}}}}^{}_{b}\,\dot{{\mathsf{a}}}_{b}^{_{V}} \end{aligned}$$

where \(\dot{{\varvec{B}}}_{\times }\), \(\dot{{\varvec{M}}}_{\times }\) can directly be calculated from (29). Similar to the first equation of this Appendix, the first derivative of \({\varvec{f}}^{_{PM}}\) is implemented as three 3 \(\times \) 1 column-vectors. The other three derivatives are directly 3 \(\times \) 1 vectors. The subindex \(\times \) implies the allocation of a 3 \(\times \) 1 vector into a 3 \(\times \) 3 antisymmetric matrix, see Sect. 5 and (66).

The derivatives of \({\varvec{D}}\) in the Maxwell stress expressions and in (73) are from its definitions 3 \(\times \) 1 vectors. Due to the form of the first two equations (71), these derivatives are equal to those of \({\varvec{P}}\) present in \({\varvec{f}}^{_{PM}}\) (third of (71)), except for the one with respect to \({{\mathsf{a}}}_{b}^{_{V}}\). The same must be done for the derivatives of \(\dot{{\varvec{D}}}\) with respect to the time derivatives of the dof.

$$\begin{aligned} \frac{\partial {\varvec{D}}}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}} &= \frac{\partial {\varvec{P}}}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}} = \frac{\partial \dot{{\varvec{P}}}}{\partial \dot{{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}}= {\varvec{e}}^{_V}\,{{\varvec{\mathcal {B}}}}^{s}_{b} \\ \frac{\partial {\varvec{D}}}{\partial {{\mathsf{a}}}_{b}^{_{V}}} &= \left[ \frac{\partial \varvec{\epsilon }}{\partial {\varvec{E}}}\,{{\varvec{\mathcal {B}}}}^{\top }_{b}\,{{\mathsf{a}}}_{b}^{_{V}}-\varvec{\epsilon }\right] \,{{\varvec{\mathcal {B}}}}^{}_{b} \\ \frac{\partial {\varvec{D}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}} &= \frac{\partial {\varvec{P}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}} = \frac{\partial \dot{{\varvec{P}}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{\varphi }}} = -\varvec{\nu }\,{{\varvec{\mathcal {B}}}}^{}_{b} \\ \frac{\partial {\varvec{D}}}{\partial {{\mathsf{a}}}_{b}^{_{T^e}}} &= \frac{\partial {\varvec{P}}}{\partial {{\mathsf{a}}}_{b}^{_{T^e}}} = \frac{\partial \dot{{\varvec{P}}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{T^e}}} = \varvec{\pi }^{_V}\,{\mathcal{N}}_{b} \end{aligned}$$

and those of \({\varvec{D}}^\top \) or \({\varvec{D}}_\times \) (as \({\varvec{B}}^\top , {\varvec{B}}_\times \) in the next equations) are directly the transpose or the cross form of the results. Some of these expressions will be used for the derivatives of the capacity matrices. The remaining derivatives are

$$\begin{aligned} \frac{\partial {\varvec{P}}}{\partial {{\mathsf{a}}}_{b}^{_{V}}} = \frac{\partial {\varvec{D}}}{\partial {{\mathsf{a}}}_{b}^{_{V}}} + \epsilon_0\,{{\varvec{\mathcal {B}}}}^{}_{b} ; \qquad \frac{\partial \dot{{\varvec{P}}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{V}}} = \left[ \epsilon_0{\varvec{I}}- \varvec{\epsilon }\right] \,{{\varvec{\mathcal {B}}}}^{}_{b} \end{aligned}$$

The derivatives of \({\varvec{B}}\) and its time derivative for the stresses, ponderomotive forces and (74) are

$$\begin{aligned} \frac{\partial {\varvec{B}}}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}} &= \frac{\partial \dot{{\varvec{B}}}}{\partial \dot{{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}} = \mu_0 \frac{\partial {\varvec{M}}}{\partial {{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}} = \mu_0 \frac{\partial \dot{{\varvec{M}}}}{\partial \dot{{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}} = {\varvec{e}}^\varphi \,{{\varvec{\mathcal {B}}}}^{s}_{b} \\ \frac{\partial {\varvec{B}}}{\partial {{\mathsf{a}}}_{b}^{_{V}}} &= \frac{\partial \dot{{\varvec{B}}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{V}}} = \mu_0 \frac{\partial {\varvec{M}}}{\partial {{\mathsf{a}}}_{b}^{_{V}}} = \mu_0 \frac{\partial \dot{{\varvec{M}}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{V}}} = -\varvec{\nu }\,{{\varvec{\mathcal {B}}}}^{}_{b} \\ \frac{\partial {\varvec{B}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}} &= \left( \frac{\partial \varvec{\mu }}{\partial {\varvec{H}}} {{\varvec{\mathcal {B}}}}^{\top }_{b} {{\mathsf{a}}}_{b}^{_{\varphi }} - \varvec{\mu }\right) {{\varvec{\mathcal {B}}}}^{}_{b} \\ \frac{\partial {\varvec{B}}}{\partial {{\mathsf{a}}}_{b}^{_{T^e}}} &= \frac{\partial \dot{{\varvec{B}}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{T^e}}} = \mu_0 \frac{\partial {\varvec{M}}}{\partial {{\mathsf{a}}}_{b}^{_{T^e}}} = \mu_0 \frac{\partial \dot{{\varvec{M}}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{T^e}}} = \varvec{\pi }^\varphi \,{\mathcal{N}}_{b}\end{aligned}$$

Since it is useful in a hysteresis simulation of ferroelectric materials, it has been assumed that the properties \(\varvec{\epsilon }\), \(\varvec{\mu }\) may vary with the corresponding field although not with time. In order to preserve the physical sense of laboratory tests, and since the matrices of \(\varvec{\epsilon }\), \(\varvec{\mu }\) are diagonal (see Appendix 4), the derivatives are performed term by term and may be stored in a 3 \(\times \) 1 vector; for instance the material permittivity derivative results in

$$\begin{aligned} \frac{\partial \varvec{\epsilon }}{\partial {\varvec{E}}} = \left\{\begin{array}{ccc} \frac{\partial \epsilon_1}{\partial E_1}\;,& \frac{\partial \epsilon_2}{\partial E_2}\;,& \frac{\partial \epsilon_3}{\partial E_3} \end{array}\right\}^\top \end{aligned}$$

The remaining derivatives are

$$\begin{aligned} \begin{array}{ll} \frac{\partial {\varvec{M}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}} = \frac{1}{\mu_0} \frac{\partial {\varvec{B}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}} + {{\varvec{\mathcal {B}}}}^{}_{b} &{};\qquad \frac{\partial \dot{{\varvec{M}}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{\varphi }}} = \left[ {\varvec{I}}- \frac{\varvec{\mu }}{\mu_0} \right] \,{{\varvec{\mathcal {B}}}}^{}_{b} \\ \frac{\partial \dot{{\varvec{B}}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{V}}} = -\varvec{\mu }\,{{\varvec{\mathcal {B}}}}^{}_{b} &{} \end{array} \end{aligned}$$

The partial derivatives from capacities (76) represent heat dissipation due to electromagnetic dynamics; at the microscopic level, they can be related to friction among dipoles.

$$\begin{aligned} \frac{\partial {\varvec{f}}^{_{PM}}}{\partial \dot{{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}}&= {} \frac{\partial \dot{{\varvec{P}}}_{\times }}{\partial \dot{{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}}\,{\varvec{B}}+{\varvec{P}}_{\times }\, \frac{\partial \dot{{\varvec{B}}}}{\partial \dot{{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}} +\epsilon_0\mu_0\, \frac{\partial \dot{{\varvec{M}}}_{\times }}{\partial \dot{{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}}\,{{\varvec{\mathcal {B}}}}^{}_{b}\,{{\mathsf{a}}}_{b}^{_{V}} \\ \frac{\partial {\varvec{f}}^{_{PM}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{V}}}&= {} \frac{\partial \dot{{\varvec{P}}}_{\times }}{\partial \dot{{\mathsf{a}}}_{b}^{_{V}}}\,{\varvec{B}}+{\varvec{P}}_{\times }\, \frac{\partial \dot{{\varvec{B}}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{V}}} +\epsilon_0\mu_0\left ( \frac{\partial \dot{{\varvec{M}}}_{\times }}{\partial \dot{{\mathsf{a}}}_{b}^{_{V}}}\,{{\mathsf{a}}}_{b}^{_{V}} + {\varvec{M}}_{\times } \right )\,{{\varvec{\mathcal {B}}}}^{}_{b} \\ \frac{\partial {\varvec{f}}^{_{PM}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{\varphi }}}&= {} \frac{\partial \dot{{\varvec{P}}}_{\times }}{\partial \dot{{\mathsf{a}}}_{b}^{_{\varphi }}}\,{\varvec{B}}+{\varvec{P}}_{\times }\, \frac{\partial \dot{{\varvec{B}}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{\varphi }}} +\epsilon_0\mu_0\, \frac{\partial \dot{{\varvec{M}}}_{\times }}{\partial \dot{{\mathsf{a}}}_{b}^{_{\varphi }}}\,{{\varvec{\mathcal {B}}}}^{}_{b}\,{{\mathsf{a}}}_{b}^{_{V}} \\ \frac{\partial {\varvec{f}}^{_{PM}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{T^e}}}&= {} \frac{\partial \dot{{\varvec{P}}}_{\times }}{\partial \dot{{\mathsf{a}}}_{b}^{_{T^e}}}\,{\varvec{B}}+{\varvec{P}}_{\times }\, \frac{\partial \dot{{\varvec{B}}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{T^e}}} +\epsilon_0\mu_0\, \frac{\partial \dot{{\varvec{M}}}_{\times }}{\partial \dot{{\mathsf{a}}}_{b}^{_{T^e}}}\,{{\varvec{\mathcal {B}}}}^{}_{b}\,{{\mathsf{a}}}_{b}^{_{V}} \end{aligned}$$

Finally, the derivatives of the two-way couplings from (77) using (50) are

$$\begin{aligned} \frac{\partial {\mathcal {T}}_0}{\partial \dot{{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}} &= T_0\,\varvec{\beta }{^\top }\,{{\varvec{\mathcal {B}}}}^{s}_{b} ;\quad \frac{\partial {\mathcal {T}}_0}{\partial \dot{{\mathsf{a}}}_{b}^{_{V}}} = -T_0\,\varvec{\pi }^{_V}{^\top }\,{{\varvec{\mathcal {B}}}}^{}_{b} \\ \frac{\partial {\mathcal {T}}_0}{\partial \dot{{\mathsf{a}}}_{b}^{_{\varphi }}} &=-T_0\,\varvec{\pi }^\varphi {^\top }\,{{\varvec{\mathcal {B}}}}^{}_{b} \end{aligned}$$

Appendix 2

Related to NEI, the derivatives of the tangent stiffness tensors are obtained using the chain rule. For (81), the Cauchy tensor derivatives are equal to the first and fourth from EI in Appendix 1. The derivatives of the Maxwell vacuum tensor are from (63)

$$\begin{aligned} \frac{\partial {\varvec{T}}^{_M}_v}{\partial {{\mathsf{a}}}_{b}^{_{V}}}&= {} \epsilon_0\,\left [ 2\,{{\varvec{\mathcal {B}}}}^{}_{b}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} - {{\varvec{\mathcal {B}}}}^{\top }_{b}\,{{\varvec{\mathcal {B}}}}^{}_{b}\,{\varvec{I}}\right ]\,{{\mathsf{a}}}_{b}^{_{V}} \\ \frac{\partial {\varvec{T}}^{_M}_v}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}}&= {} \mu_0\,\left [ 2\,{{\varvec{\mathcal {B}}}}^{}_{b}\,{{\varvec{\mathcal {B}}}}^{\top }_{b} - {{\varvec{\mathcal {B}}}}^{\top }_{b}\,{{\varvec{\mathcal {B}}}}^{}_{b}\,{\varvec{I}}\right ]\,{{\mathsf{a}}}_{b}^{_{\varphi }} \end{aligned}$$

Again Voigt notation may be applied to these derivatives to obtain a 6 \(\times \) 1 vector. The non-zero derivatives of the electric flux are

$$\begin{aligned} \frac{\partial {\varvec{j}}}{\partial {{\mathsf{a}}}_{b}^{_{V}}}&= {} -\,\varvec{\gamma}\,{{\varvec{\mathcal {B}}}}^{}_{b} \\ \frac{\partial {\varvec{j}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}}&= {} -\left[ \frac{\partial \varvec{\gamma }}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}}\,{{\mathsf{a}}}_{b}^{_{V}} + \left( \varvec{\gamma} \,\frac{\partial \varvec{\alpha}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}}+ \frac{\partial \varvec{\gamma}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi}}}\,\varvec{\alpha } \right) \,{{{\mathsf{a}}}_{b}^{_{T^n}}} \right] \,{{\varvec{\mathcal {B}}}}^{}_{b} \\ \frac{\partial {\varvec{j}}}{\partial {{\mathsf{a}}}_{b}^{_{T^n}}}&= {} -\left [ \frac{\partial \varvec{\gamma }}{\partial {{\mathsf{a}}}_{b}^{_{T^n}}}\,{{\mathsf{a}}}_{b}^{_{V}} +\left( \varvec{\gamma}\, \frac{\partial \varvec{\alpha }}{\partial {{\mathsf{a}}}_{b}^{_{T^n}}} + \frac{\partial \varvec{\gamma}}{\partial {{\mathsf{a}}}_{b}^{_{T^n}}}\,\varvec{\alpha} \right){{\mathsf{a}}}_{b}^{_{T^n}} + \varvec{\gamma} \,\varvec{\alpha} \right ]\,{{\varvec{\mathcal {B}}}}^{}_{b} \end{aligned}$$

Following the same procedure, the non-zero derivatives of the thermal flux are

$$\begin{aligned} \frac{\partial {\varvec{q}}}{\partial {{\mathsf{a}}}_{b}^{_{V}}}&= {\mathcal{N}}_{b}\,{{\mathsf{a}}}_{b}^{_{T^n}}\,\varvec{\alpha }\, \frac{\partial {\varvec{j}}}{\partial {{\mathsf{a}}}_{b}^{_{V}}} \\ \frac{\partial {\varvec{q}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}}&= -\left[ \frac{\partial \varvec{\kappa }}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}}\,{{\varvec{\mathcal {B}}}}^{}_{b} - {\mathcal{N}}_{b}\,\left( \frac{\partial \varvec{\alpha }}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}}\,{\varvec{j}}+ \varvec{\alpha }\, \frac{\partial {\varvec{j}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}} \right) \right] \,{{\mathsf{a}}}_{b}^{_{T^n}} \\ \frac{\partial {\varvec{q}}}{\partial {{\mathsf{a}}}_{b}^{_{T^n}}}&= -\varvec{\kappa }\,{{\varvec{\mathcal {B}}}}^{}_{b} +{\mathcal{N}}_{b}\,\varvec{\alpha }\,{\varvec{j}}\\&\quad-\,\left[ \frac{\partial \varvec{\kappa }}{\partial {{\mathsf{a}}}_{b}^{_{T^n}}}\,{{\varvec{\mathcal {B}}}}^{}_{b} -{\mathcal{N}}_{b}\,\left( \frac{\partial \varvec{\alpha }}{\partial {{\mathsf{a}}}_{b}^{_{T^n}}}\,{\varvec{j}}+ \varvec{\alpha }\, \frac{\partial {\varvec{j}}}{\partial {{\mathsf{a}}}_{b}^{_{T^n}}} \right) \right] \,{{\mathsf{a}}}_{b}^{_{T^n}} \end{aligned}$$

For both fluxes and from (60) the derivatives of the Peltier and conductivities’ matrices are, for the symmetric parts

$$\begin{aligned} \frac{\partial \varvec{\alpha }}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}} &= \frac{\hbox {d} \varvec{\alpha }_{sk}}{\hbox {d} {{\mathsf{a}}}_{b}^{_{\varphi }}} = -\mu_0\,N\,{{\varvec{\mathcal {B}}}}^{\times }_{b} \\ \frac{\partial \varvec{\alpha }}{\partial {{\mathsf{a}}}_{b}^{_{T^n}}} &= \frac{\hbox {d} \varvec{\alpha }_s}{\hbox {d} {{\mathsf{a}}}_{b}^{_{T^n}}} = {\mathcal{N}}_{b}\, \frac{\hbox {d} \alpha }{\hbox {d} T^n}\,{\varvec{I}}\\ \frac{\partial \varvec{\gamma }}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}} &= \frac{\partial \varvec{\gamma }}{\partial \varvec{\rho }}\, \frac{\hbox {d} \varvec{\rho }_{sk}}{\hbox {d} {{\mathsf{a}}}_{b}^{_{\varphi }}} = \mu_0\,R\,\varvec{\gamma }\,{{\varvec{\mathcal {B}}}}^{\times }_{b}\,\varvec{\gamma }\\ \frac{\partial \varvec{\gamma }}{\partial {{\mathsf{a}}}_{b}^{_{T^n}}} &= \frac{\partial \varvec{\gamma }}{\partial \varvec{\rho }}\, \frac{\hbox {d} \varvec{\rho }_s}{\hbox {d} {{\mathsf{a}}}_{b}^{_{T^n}}} = -{\mathcal{N}}_{b}\, \frac{\hbox {d} \rho }{\hbox {d} T^n}\,\varvec{\gamma }\,\varvec{\gamma }\\ \frac{\partial \varvec{\kappa }}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}} &= \frac{\hbox {d} \varvec{\kappa }_{sk}}{\hbox {d} {{\mathsf{a}}}_{b}^{_{\varphi }}} = \mu_0\,M\,{{\varvec{\mathcal {B}}}}^{\times }_{b} \\ \frac{\partial \varvec{\kappa }}{\partial {{\mathsf{a}}}_{b}^{_{T^n}}} &= \frac{\hbox {d} \varvec{\kappa }_s}{\hbox {d} {{\mathsf{a}}}_{b}^{_{T^n}}} = {\mathcal{N}}_{b}\, \frac{\hbox {d} \kappa }{\hbox {d} T^n}\,{\varvec{I}} \end{aligned}$$

In the previous expressions the equalities

$$\begin{aligned} \frac{\partial \varvec{\gamma }}{\partial \varvec{\rho }}\,{\mathbf {O}}&= {} \frac{\partial \varvec{\rho }^{-1}}{\partial \varvec{\rho }}\,{\mathbf {O}} = -\varvec{\rho }^{-1}\,{\mathbf {O}}\,\varvec{\rho }^{-1} = -\varvec{\gamma }\,{\mathbf {O}}\,\varvec{\gamma }\\ \frac{\hbox {d} \varvec{\alpha }_s}{\hbox {d} {{\mathsf{a}}}_{b}^{_{T^n}}}&= {} \frac{\hbox {d} \alpha }{\hbox {d} T^n}\, \frac{\hbox {d} T^n}{\hbox {d} {{\mathsf{a}}}_{b}^{_{T^n}}} = \frac{\hbox {d} \alpha }{\hbox {d} T^n}\,{\mathcal{N}}_{b}\end{aligned}$$

have been used, where \({\mathbf{O}}\) is any second-order tensor, symmetric or not. Similar expressions to the second equation can be deduced for \(\varvec{\rho }\), \(\varvec{\kappa }\). The total derivatives \(\hbox {d}\alpha /\hbox {d}T^n\), \(\hbox {d}\rho /\hbox {d}T^n\), \(\hbox {d}\kappa /\hbox {d}T^n\) are directly calculated from their expressions in (92).

The derivatives of \({\varvec{B}}\) with respect to \({{{\varvec {\mathsf{{a}}}}}}_{b}^{_U}\), \({{\mathsf{a}}}_{b}^{_{T^n}}\) are zero since neither piezomagnetic nor pyromagnetic interactions are considered; in addition, due to the use of magnetic scalar potential \(\partial {\varvec{B}}/ \partial {{\mathsf{a}}}_{b}^{_{V}} \approx {{\varvec{0}}}\). The only non-zero term is

$$\begin{aligned} \frac{\partial {\varvec{B}}}{\partial {{\mathsf{a}}}_{b}^{_{\varphi }}} = \frac{\partial \dot{{\varvec{B}}}}{\partial \dot{{\mathsf{a}}}_{b}^{_{\varphi }}} = -\mu_0\,{{\varvec{\mathcal {B}}}}^{}_{b} \end{aligned}$$

Sub, supraindex

Description

\((\cdot )_{1,2,3}\)

Cartesian directions/FEM const.

\((\cdot )^\infty \)

Surrounding

\((\cdot )_{_T}\)

Thermal

\((\cdot )^e\)

Equilibrium

\((\cdot )^{k,l},(\cdot )_{k,l}\)

Free index, iteration

\((\cdot )^n\)

Non-equilibrium

\((\cdot )^\top \)

Transpose

\((\cdot )^*\)

Critical size

figure gh

First time derivative

\((\cdot )_{tt}\)

Total

\((\cdot )_{_{F}}\)

Driving force related

\((\cdot )^f\)

Free charge related

\(||\cdot ||\)

Norm

\((\cdot )_s,\,(\cdot )^s\)

Symmetric part

\((\cdot )_{sk},\,(\cdot )^{sk}\)

Skew-symmetric part

\((\cdot )_p\)

Natural boundary condition

\((\cdot )_u\)

Essential boundary condition

figure gi

Prescribed variable

figure gk

Second time derivative

\((\cdot )_{_U},(\cdot )^{_U}\)

Mechanical

\((\cdot )^b\)

Bound charge related

\((\cdot )_{_V},(\cdot )^{_V}\)

Electrical

\((\cdot )_\varphi ,(\cdot )^\varphi \)

Magnetic

\((\cdot )^{-1}\)

Inverse

\((\cdot )_{_P}\)

Poynting theorem related

\((\cdot )^{_{Mi}}\)

Minkowski formalism related

\((\cdot )^{_{Ab}}\)

Abraham formalism related

\((\cdot )^{_M}\)

Maxwell tensor related

\((\cdot )^{_{EM}}\)

Lorentz electro-magnetic

\((\cdot )^{_{PM}}\)

Ponderomotive

\((\cdot )^{_C}\)

Cauchy tensor related

\((\cdot )^{_R}\)

Residual

\((\cdot )_v\)

Vacuum

\((\cdot )_\times \), \((\cdot )^{\times} \)

Cross product transformed

\((\cdot )^h\)

FEM approximation

\((\cdot )^{\mathbf{x}}\)

Nodal coordinates

\((\cdot )_{a,b}\)

Local node number

\(I,J\)

Dof index

\((\cdot )_{_N}\)

Newmark integration related

\(|\cdot |\)

Determinant

Appendix 3

Description of symbols used for EI and NEI are given in the tables. The base units for the SI system have been used, with the addition of Newton [N], Joule [J], and Volt [V], of special relevance in mechanical and electrical engineering.

If a symbol represents several magnitudes (as for instance \({\mathcal {S}}\)), central dots \([\cdots ]\) are used for the units if there is not enough space to list all of them. Only diagonal submatrices are included, the off-diagonal ones from Appendices 1, 2 represent interactions between these fields.

Appendix 4

Material properties of a representative material (units in Appendix 3) to be applied to the EI cases are listed in this Appendix. They have been obtained from several references, mostly for BaTiO\(_3\)–CoFeO\(_4\) but also for other similar materials; to the best of our knowledge, no complete characterization of any material has been published probably due to the experimental difficulty and also to the absence of a general formulation. Mass density, heat capacity, thermal expansion and thermal conductivity are obtained from [56]. The pyroelectric properties are from [54], the pyromagnetic from [17] and the rest from [119].

Abbreviations

Description

FEAP

FE Analysis Program

EI

Equilibrium interaction

NEI

Non-equilibrium interaction

FEM

Finite element method

SS

Second Sound

dof

Degree of freedom

ET

Equilibrium thermodynamics

NET

Non-equilibrium thermodynamics

ENET

Extended NET

MEMS

Micro-electro-mechanical sensor

NEMS

Nano-electro-mechanical sensor

PDE

Partial differential equation

FE

Finite element

\(nel\)

# nodes per element

As mentioned in Sect. 4.2.2 for \(\alpha_{_T}\), the material properties reflect the transverse isotropy of Fig. 18. The exception in the listed data is in \(\varvec{\pi }^{_V}\), \(\varvec{\pi }^\varphi \), for which properties are assumed isotropic due to the lack of data.

$$\begin{aligned} {\mathbf {C}}&= {} \left[\begin{array}{cccccc} 116&77&78&0&0&0 \\&116&78&0&0&0 \\&162&0&0&0 \\ {\scriptstyle -sym-}&&89&0&0 \\&&86&0 \\&&&86 \end{array}\right] \; \times 10^9\\ {\varvec{e}}^{_V}&= {} \left[\begin{array}{cccccc} 0&0&0&0&0&11.6 \\&0&0&0&11.6&0 \\ -4.4&-4.4&18.6&0&0&0 \end{array}\right]\\ {\varvec{e}}^\varphi&= {} \left[\begin{array}{cccccc} 0&0&0&0&0&5.5 \\ 0&0&0&0&5.5&0 \\ 5.8&5.8&7&0&0&0 \end{array}\right] \; \times 10^2\\ \varvec{\epsilon }&= {} \left[\begin{array}{ccc} 11.2&0&0 \\ 0&11.2&0 \\ 0&0&12.6 \end{array}\right] \; \times 10^{-9}\\ \varvec{\mu }&= {} \left[\begin{array}{ccc} 5&0&0 \\ 0&5&0 \\ 0&0&10 \end{array}\right] \; \times 10^{-6}\\ \varvec{\nu }&= {} \left[\begin{array}{lll} 5.37&0&0 \\ 0&5.37&0 \\ 0&0&2737.5 \end{array}\right] \; \times 10^{-12}\\ \varvec{\pi }^{_V}&= {} \left\{\begin{array} {lll} 58.3,&58.3,& 58.3 \end{array}\right\}^\top \times 10^{-5}\\ \varvec{\pi }^\varphi&= {} \left\{\begin{array} {lll}5,& 5,&5 \end{array}\right\}^\top \times 10^{-2}\\ \varvec{\beta }&= {} \left\{\begin{array} {llllll}1.67,& 1.67, & 1.96,& 0,& 0,& 0 \end{array}\right\}^\top \times 10^6 \\ \end{aligned}$$
$$\begin{aligned} \kappa &= 2.61 ; \quad T_0 = 293 \\ c &= 434 ; \quad d = 5.5 \times 10^{-21} \\ \epsilon_0 &= 8.8542 \times 10^{-12} ; \quad \mu_0= 4\pi \times 10^{-7} \\ \rho_m &= 5.7 \times 10^3 \end{aligned}$$

Smbl

SI

Description

Dim.

\({\varvec{B}}\)

[V s/m\(^2\)]

Magnetic induction

\(\times \) 1

\({\varvec{x}}\)

[m]

Eulerian coordinate

\(\times \) 1

\(\nabla \)

[1/m]

Gradient operator

\(\times \) 1

\(V\)

[V]

Elect. scalar pot./voltage

 

\({\varvec{j}}\)

[A/m\(^2\)]

Electric flux

\(\times \) 1

\(T\)

[K]

Temperature

 

\(\varOmega \)

[m\(^3\)]

Thermodynamic domain

 

\(\varGamma \)

[m\(^2\)]

Boundary of domain

 

\({\mathcal {S}}\)

[\(\cdots \)]

State variable

 

\({\mathcal {I}}\)

[\(\cdots \)]

Intensive variable

 

\({\mathcal {E}}\)

[\(\cdots \)]

Extensive variable

 

d

 

Exact differential

 

\({\mathsf {E}}\)

[J]

Internal energy

 

\({\mathsf {Q}}\)

[J]

System heat

 

\(\delta \)

 

Variation

 

\({\mathsf {W}}\)

[J]

System mechanical work

 

\({\mathsf {S}}\)

[J/K]

ET entropy

 

\({\varvec{T}}\)

[N/m\(^2\)]

Mechanical stress

\(\times \) 1

\({\varvec{S}}\)

[m/m]

Mechanical strain

\(\times \) 1

\({\varvec{E}}\)

[V/m]

Electric field

\(\times \) 1

\({\varvec{P}}\)

[A s/m\(^2\)]

Polarization

\(\times \) 1

\(\mu_0\)

[V s/A\(\cdot \)m]

Vacuum permeability

 

\({\varvec{H}}\)

[A/m]

Magnetic field

\(\times \) 1

\({\varvec{M}}\)

[A/m]

Magnetization

\(\times \) 1

\({\varvec{X}}\)

[m]

Lagrangian coordinate

\(\times \) 1

\({\varvec{U}}\)

[m]

Lagrangian displacement

\(\times \) 1

\({\varvec{u}}\)

[m]

Eulerian displacement

\(\times \) 1

\(\partial \)

 

Partial differential

 

\({_{\mathcal {P}}}\)

[\(\cdots \)]

Eulerian continuum prprt.

 

\(t\)

[s]

Time

 

\({\mathbf{v}}\)

[m/s]

Eulerian velocity

\(\times \) 1

\(\rho \)

[\(\cdots \)]

Density (w/ subindex)

 

\(\varDelta \)

 

Increment

 

\(m\)

[kg]

Mass

 

\(q\)

[A]

Electric charge

 

\(Kn\)

 

Knudsen number

 

\(De\)

 

Deborah number

 

\({\mathcal {P}}\)

[\(\cdots \)]

Thermodynamic variable

 

\({\mathsf {e}}\)

[J/m\(^3\)]

NET energy density

 

\({\mathsf {s}}\)

[J/K m\(^3\)]

NET entropy density

 

\({\mathbf {n}}\)

 

Outward boundary normal

\(\times \) 1

\(\sigma \)

[J/s K]

Entropy production

 

\({\varvec{F}}\)

[\(\cdots \)]

Driving forces

\(\times \) 1

\({\varvec{q}}\)

[J/s m\(^2\)]

Thermal flux

\(\times \) 1

\(L^{kl}\)

[\(\cdots \)]

1st-order material property

 

\({\varvec{W}}\)

[m/m]

Small rotation strain

\(\times \) 1

\({\varvec{f}}\)

[N/m\(^3\)]

Volume force

\(\times \) 1

\({\varvec{t}}\)

[N/m\(^2\)]

Boundary pressure

\(\times \) 1

\(\epsilon_0\)

[A s/V m]

Vacuum permittivity

 

\(\varvec{\chi }\)

[\(\cdots \)]

Material susceptibility

\(\times \) 3

\({\varvec{D}}\)

[A s/m\(^2\)]

Electric displc./induction

\(\times \) 1

\(\varvec{\epsilon }\)

[A s/V m]

Material permittivity

\(\times \) 3

\(\varvec{\mu }\)

[V s/A m]

Material permeability

\(\times \) 3

\({\varvec{I}}\)

 

Identity matrix

\(\times \) 3

\({\varvec{A}}\)

[V s/m]

Magnetic vector

\(\times \) 1

\(\varphi \)

[A]

Magnetic scalar potential

 

\(\varvec{V}\)

[A s/m]

Electric vector

\(\times \) 1

\(c_{_P}\)

[\(\cdots \)]

Poynting constant

 

\(\dot{r}\)

[V A/m\(^3\)]

Scalar Poynting residual

 

\({\varvec{G}}\)

[N s/m\(^3\)]

Momentum density

\(\times \) 1

\(T_0\)

[K]

Reference temperature

 

\(c\)

[J/kg K]

Heat capacity

 

\({\mathcal {T}}_0\)

[N/s m\(^2\)]

Two-way thermoelast. terms

 

\(\varvec{\beta }\)

[N/K m\(^2\)]

Thermal expansion tensor

\(\times \) 1

\(\varvec{\pi }\)

[\(\cdots \)]

Pyro-\(V\), -\(\varphi \) couplings

\(\times \) 1

\(d\)

[m\(^2\)]

Two-temp. constraint

 

\(\nabla ^2\)

[1/m\(^2\)]

Laplace operator

 

\(\varvec{\mathcal {Q}}\)

[J/s m\(^2\)]

Two-temperature heat flux

\(\times \) 1

\({\mathbf {C}}\)

[N/m\(^2\)]

Elasticity tensor

\(\times \) 6

\(\alpha_{_T}\)

[1/K]

Thermal expansion coeff.

 

\(\Pi \)

[J]

Electromagnetic enthalpy

 

\({\varvec{e}}\)

[\(\cdots \)]

Piezo-\(V\), -\(\varphi \) couplings

\(\times \) 6

\(\varvec{\nu }\)

[s/m]

Magnetoelectric coupling

\(\times \) 3

\(\kappa \)

[J s/m K]

Thermal conductivity

 

\(\lambda \)

[N/m\(^2\)]

First Lamé parameter

 

\(\mu \)

[N/m\(^2\)]

Shear modulus

 

\(\delta_{ij}\)

 

Kronecker delta

 

\({\varvec{L}}\)

[\(\cdots \)]

NEI material properties

 

\(\varvec{\alpha }\)

[V/K]

Seebeck tensor

\(\times \) 3

\(\alpha \)

[V/K]

Seebeck coefficient

 

\(\varvec{\rho }\)

[m V/A]

Electric resistivity tensor

\(\times \) 3

\(\rho \)

[m V/A]

Electric resistivity

 

\(\varvec{\kappa }\)

[J s/m K]

Thermal conductivity tensor

\(\times \) 3

\(\varvec{\gamma }\)

[J s/m K]

Electric conductivity tensor

\(\times \) 3

\(N\)

[m\(^2\)/K s]

Nernst coefficient

 

\(R\)

[m\(^3\)/A s]

Hall coefficient

 

\(M\)

[m\(^2\)/V s]

Righi-Leduc coefficient

 

\({\mathcal{N}}\)

 

Local shape function

 

\(\varvec{\xi }\)

[m]

Local FE coordinates

\(\times \) 1

\({{\varvec {\mathsf{{a}}}}}\)

[m]

Nodal elastic dof

\(\times \) 1

\({{\mathsf{a}}}_{}^{_{}}\)

[\(\cdots \)]

Other nodal dof

 

\({{\varvec{\mathcal {B}}}}^{s}_{}\)

[1/m]

Local FE mech. gradient

\(\times \) 3

\({{\varvec{\mathcal {B}}}}^{}_{}\)

[1/m]

Local FE potential gradient

\(\times \) 1

\({\varvec{\mathcal {R}}}, {\mathcal{R}}\)

[\(\cdots \)]

Residual

 

\({\varvec{\mathcal {K}}}, {\mathcal{K}}\)

[\(\cdots \)]

Tangent stiffness

 

\({\varvec{\mathcal {C}}}, {\mathcal{C}}\)

[\(\cdots \)]

Tangent capacity

 

\({\varvec{\mathcal {M}}}\)

[\(\cdots \)]

Tangent mass

\(\times \) 3

\(\beta , \gamma \)

[\(\cdots \)]

Newmark-\(\beta \) parameters

 

\(l_{i}\)

[m]

Dimension in \(x_i\) direction

 

\(\varUpsilon \)

[K,V,A]

Any of 3 scalar potentials

 

\(\varvec{\Xi }\)

[\(\cdots \)]

Associated field for \(\varUpsilon \)

\(\times \) 1

\(\nu \)

 

Poisson ratio

 

\({\mathbf{O}}\)

[\(\cdots \)]

Any second-order tensor

\(\times \) 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Aparicio, J.L., Palma, R. & Taylor, R.L. Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials. Arch Computat Methods Eng 23, 535–583 (2016). https://doi.org/10.1007/s11831-015-9149-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-015-9149-9

Navigation