Skip to main content
Log in

Finite Element Guidelines for Simulation of Delamination Dominated Failures in Composite Materials Validated by Case Studies

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The focus of this paper is on the computational modelling of progressive damage in composite structures of fibre reinforced laminae. A general review of modelling approaches to failure in the context of the finite element method is first presented, with an emphasis on models based on continuum damage mechanics. The way in which delamination and matrix splitting (that may or may not interact with fibre-tension damage) should be addressed in the framework of a commercial finite element code is considered next. An important feature of the analysis is it does not rely on customized user-subroutines but solely on the analysis capabilities of the general purpose software Abaqus, thus ensuring that the numerical results can be universally reproduced. It is shown that the finite element simulations can accurately represent the physical mechanisms controlling damage development and progression and reproduce a number of phenomena including delamination, laminate in-plane failure and behaviour at notches. The paper ends giving guidelines for the generalized modelling methodology using Abaqus without user-subroutines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Abaqus Manual (2013) Version 6.13 Dassault systems http://www.simulia.com

  2. Lemaitre J (1986) Local approach of fracture. Eng Fract Mech 25:523–537

    Article  Google Scholar 

  3. Schwarze M, Reese (2009) A reduced integration solid-shell finite element based on the EAS and the ANS concept: geometrically linear problems. Int J Numer Meth Eng 806:1322–1355

    Article  MathSciNet  MATH  Google Scholar 

  4. Parisch H (1995) A continuum-based shell theory for non-linear applications. Int J Numer Meth Eng 38:1855–1883

    Article  MATH  Google Scholar 

  5. Hauptmann R, Schweizerhof K (1998) A systematic development of ‘solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int J Numer Meth Eng 42:49–69

    Article  MATH  Google Scholar 

  6. Hauptmann R, Schweizerhof K, Doll S (2000) Extension of the ‘solid-shell’ concept for application to large elastic and large elastoplastic deformations. Int J Numer Meth Eng 49:1121–1141

    Article  MATH  Google Scholar 

  7. Remmers JC, Wells GN, de Borst R (2003) A solid-like shell element allowing for arbitrary delaminations. Int J Numer Meth Eng 58:1701–1736

    Article  MATH  Google Scholar 

  8. Mi Y, Crisfield MA, Davies GAO, Hellweg HB (1998) Progressive delamination using interface elements. J Compos Mater 32(14):1246–1272

    Article  Google Scholar 

  9. Petrossian Z, Wisnom MR (1998) Prediction of delamination initiation and growth from discontinuous plies using interface elements. Compos Part A Appl S 29:503–515

    Article  Google Scholar 

  10. Chen J, Crisfield M, Kinloch AJ, Busso EP, Matthews FL, Qiu Y (1999) Prediciting progressive delamination of composite material specimens via interface elements. Mech Compos Mater St 6:301–317

    Google Scholar 

  11. Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Meth Eng 50:1701–1736

    Article  MATH  Google Scholar 

  12. Borg R, Nilsson L, Simonsson K (2001) Simulation of delamination in fiber composites with a discrete cohesive failure model. Compos Sci Technol 61:667–677

    Article  Google Scholar 

  13. Turon A (2006) Simulation of delamination in composites under quasi-static and fatigue loading using cohesive zone models. PhD thesis, Univ. Girona

  14. Jiang WG, Hallett SR, Green BG, Wisnom MR (2007) A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled noteched tensile specimens. Int J Numer Meth Eng 69:1982–1995

    Article  MATH  Google Scholar 

  15. Wisnom MR (2010) Modelling discrete failures in composites with interface elements. Compos Part A Appl S 41:795–805

    Article  Google Scholar 

  16. Schellekens JCJ, de Borst R (1993) On the numerical integration of interface elements. Int J Numer Meth Eng 36:43–66

    Article  MATH  Google Scholar 

  17. Hashin Z (1983) Analysis of composite materials. J Appl Mech 50:481–505

    Article  MATH  Google Scholar 

  18. Jones RM (1999) Mechanics of composite materials, 2nd edn. Taylor and Francis, USA

    Google Scholar 

  19. Nairn JA (2000) Matrix microcracking in composites. In: Kelly A, Zweben C (eds.) Comprehensive composite materials, Vol. 2, Elsevier Science, Amsterdam, Chapter 2.13, 433–528

  20. Sims GD, Broughton WR (2000) Glass fiber reinforced plastics: properties. In: Kelly A, Zweben C (eds.) Comprehensive composite materials, Vol. 2, Elsevier Science, Amsterdam, Chapter 2.05, 151–197

  21. Pinho ST (2005) Modelling failure of laminated composites using physically-based failure models. PhD thesis, Imperial College London

  22. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  23. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. In: Dryden HL, von Kármán Th, Kuerti G, van den Dungen FH, Howarth L (eds.) Advances in applied mechanics, Vol. 7, 55–129

  24. Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40:1377–1397

    Article  MATH  Google Scholar 

  25. Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434

    Article  MATH  Google Scholar 

  26. Camanho PP, Dávila CG, Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37(16):1415–1438

    Article  Google Scholar 

  27. Knops M (2008) Analysis of failure in fiber polymer laminates: the theory of Alfred Puck. Springer, Germany

    Google Scholar 

  28. Puck A, Schürmann H (2002) Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 62:1633–1662

    Article  Google Scholar 

  29. Tsai SW, Wu EM (1971) A general theory of strength for anisotropic materials. J Compos Mater 5(1):58–80

    Article  Google Scholar 

  30. Hashin Z, Rottem A (1973) A fatigue failure criterion for fiber reinforced materials. Report AFOSR-TR-73-0686, Department of Materials Engineering, Technion, Israel Institute of Technology

  31. Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47:329–334

    Article  Google Scholar 

  32. Murray YD (1989) Theory and verification of the fiber composite damage model implemented in DYNA3D. Report DNA-TR-89-132

  33. Barbero EJ (2010) Introduction to composite materials design, 2nd edn. CRC Press, Philadelphia

    Google Scholar 

  34. Rastellini F, Oller S, Salomón O, Oñate E (2008) Composite materials non-linear modelling for long fibre-reinforced laminates: computational basis, computational aspects and validations. Comput Struct 86(9):889–896

    Article  Google Scholar 

  35. Martínez X, Oller S (2009) Numerical simulation of matrix reinforced composite materials subjected to compression loads. Arch Comput Methods Eng 16:357–397

    Article  MATH  Google Scholar 

  36. Martínez X, Rastellini F, Oller S, Flores F, Oñate E (2011) Computationally optimized formulation for the simulation of composite materials and delamination failures. Compos Part B Eng 42:134–144

    Article  Google Scholar 

  37. Pérez MA, Martínez X, Oller S, Gil L, Rastellini F, Flores F (2013) Impact damage prediction in carbon fiber-reinforced laminated composite using the matrix-reinforced theory. Compos Struct 104:239–248

    Article  Google Scholar 

  38. Ladeveze P, Le Dantec E (1992) Damage modelling of the elementary ply for laminated composites. Compos Sci Technol 43:257–267

    Article  Google Scholar 

  39. Matzenmiller A, Lubliner J, Taylor RL (1995) A constitutive model for anisotropic damage in fiber-composites. Mech Mater 20:125–152

    Article  Google Scholar 

  40. Lemaitre J (1996) A course on damage mechanics, 2nd edn. Springer, Heidelberg

    Book  MATH  Google Scholar 

  41. Lapczyk I, Hurtado JA (2007) Progressive damage modeling in fiber-reinforced materials. Compos Part A Appl S 38:2333–2341

    Article  Google Scholar 

  42. Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007) A continuum damage model for composite laminates. Part I: constitutive model. Mech Mater 39:897–908

    Article  Google Scholar 

  43. Flatscher T, Pettermann HE (2011) A constitutive model for fiber-reinforced polymer plies accounting for plasticity and brittle damage including softening: implementation for implicit FEM. Compos Struct 93:2241–2249

    Article  Google Scholar 

  44. Lemaitre J, Dufailly J (1987) Damage measurements. Eng Fract Mech 28:643–661

    Article  Google Scholar 

  45. Krajcinovic D (1989) Damage mechanics. Mech Mater 8:117–197

    Article  Google Scholar 

  46. Ju JW (1990) Isotropic and anisotropic damage variables in continuum damage mechanics. J Eng Mech-ASCE 116(12):2764–2770

    Article  Google Scholar 

  47. Catalanotti G, Camanho PP, Xavier J, Dávila CG, Marques AT (2010) Measurement of resistance curves in the longitudinal failure of composites using digital image correlation. Compos Sci Technol 70:1986–1993

    Article  Google Scholar 

  48. Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mater Struct 16:155–177

    Google Scholar 

  49. Allix O, Ladevèze P (1992) Interlaminar interface modelling for the prediction of delamination. Compos Struct 22(4):235–242

    Article  Google Scholar 

  50. Falk ML, Needleman A, Rice JR (2001) A critical evaluation of cohesive zone models of dynamic fracture. J Phys IV Proc 11(Pr.5):43–50

    Google Scholar 

  51. Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech-ASCE 128(11):1119–1149

    Article  Google Scholar 

  52. Yang Q, Cox B (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133:107–137

    Article  MATH  Google Scholar 

  53. Daudeville L, Allix O, Ladevèze P (1995) Delamination analysis by damage mechanics. Some applications. Compos Eng 5(1):17–24

    Article  Google Scholar 

  54. Turon A, Dávila CG, Camanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74:1665–1682

    Article  Google Scholar 

  55. Brewer JC, Lagace PA (1988) Quadratic stress criterion for initiation of delamination. J Compos Mater 22:1141–1155

    Article  Google Scholar 

  56. Mohammadi S, Owen DRJ, Peric D (1998) A combined finite/discrete element algorithm for delamination analysis of composites. Finite Elem Anal Des 28:321–336

    Article  MATH  Google Scholar 

  57. Benzeggagh ML, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56:439–449

    Article  Google Scholar 

  58. Harper PW, Hallett SR (2008) Cohesive zone length in numerical simulations of composite delamination. Eng Fract Mech 75:4774–4792

    Article  Google Scholar 

  59. Bažant ZP, Planas J (1998) Fracture and size effect in concrete and other quasi-brittle materials. CRC Press, Boca Raton

    Google Scholar 

  60. Belytschko T, Bažant ZP, Hyun YW, Chang TP (1986) Strain-softening materials and finite-element solutions. Comput Struct 23(2):163–180

    Article  Google Scholar 

  61. Pijaudier-Cabot G, Bažant ZP (1987) Nonlocal damage theory. J Eng Mech-ASCE 113(10):1512–1533

    Article  MATH  Google Scholar 

  62. Jirásek M, Patzák B (2001) Models for quasi-brittle failure: theoretical and computational aspects. Proceedings of the 2nd European Conference on computational mechanics; solids, structures and coupled problems in engineering, 70–71 (full paper on CD Rom)

  63. Needleman A (1988) Material rate dependence and mesh sensitivity in localization problems. Comput Method Appl M 67:69–85

    Article  MATH  Google Scholar 

  64. Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007) A continuum damage model for composite laminates. Part II: computational implementation and validation. Mech Mater 39:909–919

    Article  Google Scholar 

  65. Chaboche JL, Feyel F, Monerie Y (2001) Interface debonding models: a viscous regularization with a limited rate dependency. Int J Solids Struct 38:3127–3160

    Article  MATH  Google Scholar 

  66. Gao YF, Bower AF (2004) A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces. Model Simul Mater Sc 12:453–463

    Article  Google Scholar 

  67. Hamitouche L, Tarfaoui M, Vautrin A (2008) An interface debonding law subject to viscous regularization for avoiding instability: application to the delamination problems. Eng Fract Mech 75:3084–3100

    Article  Google Scholar 

  68. Crisfield M (1997) Non-linear finite element analysis of solids and structures, Volume 1: Essentials. Wiley, Chichester, UK

  69. Davidson P, Waas AW (2012) Non-smooth mode I fracture of fibre-reinforced composites: an experimental, numerical and analytical study. Phil Trans R Soc A 370:1942–1965

    Article  MathSciNet  MATH  Google Scholar 

  70. ASTM International 2001. ASTM D 6671-01: Standard test method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites, USA

  71. Reeder JR, Demarco K, Whitley KS (2004) The use of doubler reinforcement in delamination toughness testing. Compos Part A Appl S 35:1337–1344

    Article  Google Scholar 

  72. Gustafson PA, Waas AW (2009) The influence of adhesive constitutive parameters in cohesive zone finite element models of adhesively bonded joints. Int J Solids Struct 46:2201–2215

    Article  MATH  Google Scholar 

  73. Spearing SM, Beaumont PWR (1992) Fatigue damage mechanics of composite materials. I: Experimental measurement of damage and post-fatigue properties. Compos Sci Technol 44:159–168

    Article  Google Scholar 

  74. Wisnom MR, Chang FK (2000) Modelling of splitting and delamination in notched cross-ply laminates. Compos Sci Technol 60:2849–2856

    Article  Google Scholar 

  75. van der Meer FP, Oliver C, Sluys LJ (2010) Computational analysis of progressive failure in a notched laminate including shear nonlinearity and fiber failure. Compos Sci Technol 70:692–700

    Article  Google Scholar 

  76. Hallett SR, Wisnom MR (2006) Numerical investigation of progressive damage and the effect of layup in notched tensile tests. J Compos Mater 40(14):1229–1245

    Article  Google Scholar 

  77. Yashiro S, Okabe T, Toyama N, Takeda N (2007) Monitoring damage in holed CFRP laminates using embedded chirped FBG sensors. Int J Solids Struct 44:603–613

    Article  Google Scholar 

  78. van der Meer FP, Sluys LJ (2009) Continuum models for the analysis of progressive failure in composite laminates. J Compos Mater 43(20):2131–2156

    Article  Google Scholar 

  79. Hancox NL, Mayer NL (1994) Design data for reinforced plastics: a guide for engineers and designers. Chapman & Hall, London

    Book  Google Scholar 

  80. Pinho ST, Robinson P, Iannucci L (2006) Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos Sci Technol 66:2069–2079

    Article  Google Scholar 

  81. van der Meer FP (2010) Computational modeling of failure in composite laminates. PhD thesis, Delft Univ. Tech

  82. Hallett SR, Wisnom MR (2006) Experimental investigation of progressive damage and the effect of layup in notched tensile tests. J Compos Mater 40(2):119–141

    Article  Google Scholar 

  83. Girão Coelho AM (2015) Finite element guidelines for simulation of fibre-tension dominated failures in composite materials validated by case studies. Compos Struct (in press)

Download references

Acknowledgments

This paper was produced in the framework of the project Structural joints for building frames of pultruded fibre reinforced polymers. This research was supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme under contract Grant PIEF-GA-2012-327142. The author would like to thank Dr. Paul Davidson and Professor Anthony Waas for providing raw data for the finite element modelling of the DCB test presented in this paper, and Professor Stephen Hallett for taking time to discuss some modelling issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Girão Coelho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girão Coelho, A.M. Finite Element Guidelines for Simulation of Delamination Dominated Failures in Composite Materials Validated by Case Studies. Arch Computat Methods Eng 23, 363–388 (2016). https://doi.org/10.1007/s11831-015-9144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-015-9144-1

Keywords

Navigation