Skip to main content
Log in

Statistical Models of Rough Surfaces for Finite Element 3D-Contact Analysis

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The present study is divided in two parts. In the first one the complete elasto-plastic microcontact model of anisotropic rough surfaces is given. Rough surfaces are modelled as a random process in which the height of the surface is considered to be a two-dimensional random variable. It is assumed that the surface is statistically homogeneous. The description of anisotropic random surfaces is concentrated on strongly rough surfaces; for such surfaces the summits are represented by highly eccentric elliptic paraboloids. The model is based on the volume conservation of asperities with the plasticity index modified to suit more general geometric contact shapes during plastic deformation process. This model is utilized to determine the total contact area, contact load and contact stiffness which are a combination of the elastic, elasto-plastic and plastic components. The elastic and elasto-plastic stiffness coefficients decrease with increasing variance of the surface height about the mean plane. The standard deviation of slopes and standard deviation of curvatures have no observable effects on the normal contact stiffness. The part two deals with the solution of the fully three-dimensional contact/friction problem taking into account contact stiffnesses in the normal and tangential directions. An incremental non-associated hardening friction law model analogous to the classical theory of plasticity is used. Two numerical examples are selected to show applicability of the method proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R Soc Lond A 295:300–319

    Article  Google Scholar 

  2. Komvopoulos K, Choi D-H (1992) Elastic finite element analysis of multi-asperity contacts. J Tribol 114:823–831

    Article  Google Scholar 

  3. Greenwood JA (1984) A unified theory of surface roughness. Proc R Soc Lond A 393:133–157

    Article  Google Scholar 

  4. Fardin N, Stephansson O, Jing L (2001) The scale dependence of rock joint surface roughness. Int J Rock Mech Min Sci 38:659–669

    Article  Google Scholar 

  5. Fardin N, Feng Q, Stephansson O (2004) Application of a new in situ 3D laser scanner to study the scale effect on the rock joint surface roughness. Int J Rock Mech Min Sci 41:329–335

    Google Scholar 

  6. Whitehouse DJ (2001) Fractal or fiction. Wear 249:345–353

    Article  Google Scholar 

  7. Greenwood JA (2002) Comments on ‘Fractal or fiction’ by DJ Whitehouse. Wear 252:842–843

    Article  Google Scholar 

  8. Greenwood JA, Wu JJ (2001) Surface roughness and contact: an apology. Meccanica 36:617–630

    Article  MATH  Google Scholar 

  9. Radziejewska J (2005) Determination of 3D roughness parameters in contact problems. Adv Manuf Sci Technol 29:5–19

    Google Scholar 

  10. Majumdar A, Bhushan B (1990) Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J Tribol Trans ASME 112:205–216

    Article  Google Scholar 

  11. Sayles RS, Thomas TR (1979) Measurements of the statistical microgeometry of engineering surfaces. J Lubr Technol Trans ASME 101:409–418

    Google Scholar 

  12. Sayles RS, Thomas TR (1976) Thermal conductance of a rough elastic contact. Appl Energy 2:249–267

    Article  Google Scholar 

  13. McCool JI (1978) Characterization of surface anisotropy. Wear 49:19–31

    Article  Google Scholar 

  14. Whitehouse J, Archard JF (1970) The properties of random surfaces in contact. Proc R Soc Lond A 316:97–121

    Article  Google Scholar 

  15. Nayak PB (1971) Random process model of rough surfaces. J Lubr Technol Trans ASME 93:398–407

    Google Scholar 

  16. Nayak PB (1973) Some aspects of surface roughness measurement. Wear 26:165–174

    Article  Google Scholar 

  17. Bush AW, Gibson RD, Thomas TR (1975) The elastic contact of a rough surfaces. Wear 35:87–111

    Article  Google Scholar 

  18. Bush AW, Gibson RD, Keogh GP (1976) The limit of elastic deformation in the contact of rough surfaces. Mech Res Commun 3:169–174

    Article  Google Scholar 

  19. Bush AW, Gibson RD, Keogh GP (1979) Strongly anisotropic rough surfaces. J Lubr Technol Trans ASME 101:15–20

    Google Scholar 

  20. Sayles RS, Thomas TR (1978) Surface topography as nonstationary random process. Nature 271:431–434

    Article  Google Scholar 

  21. Whitehouse DJ, Phillips MJ (1978) Discrete properties of random surfaces. Philos Trans R Soc Lond A 290:267–298

    Article  Google Scholar 

  22. Whitehouse DJ, Phillips MJ (1982) Two-dimensional discrete properties of random surfaces. Philos Trans R Soc Lond A 305:441–468

    Article  MATH  Google Scholar 

  23. Whitehouse DJ, Phillips MJ (1985) Sampling in a two-dimensional plane. J Phys A, Math Gen 18:2465–2477

    Article  Google Scholar 

  24. Pullen J, Williamson JBP (1972) On the plastic contact of rough surfaces. Proc R Soc Lond A 327:159–173

    Article  Google Scholar 

  25. Chang WR, Etsion I, Bogy DB (1987) An elastic plastic model for the contact of rough surfaces. J Tribol Trans ASME 109:257–263

    Article  Google Scholar 

  26. Horng JH (1998) An elliptic elastic-plastic asperity microcontact model for rough surfaces. J Tribol Trans ASME 120:82–88

    Article  Google Scholar 

  27. Longuet-Higgins MS (1957) The statistical analysis of a random, moving surface. Philos Trans R Soc Lond A 249:321–387

    Article  MATH  MathSciNet  Google Scholar 

  28. Longuet-Higgins MS (1957) Statistical properties of an isotropic random surface. Philos Trans R Soc Lond A 250:157–174

    Article  MATH  MathSciNet  Google Scholar 

  29. So H, Liu DC (1991) An elastic-plastic model for the contact of anisotropic rough surfaces. Wear 146:201–218

    Article  Google Scholar 

  30. McCool JI, Gassel SS (1981) The contact of two surfaces having anisotropic roughness geometry. ASLE Special Publication SP 7, pp 29–38

  31. Kucharski S, Klimczak T, Polijaniuk A, Kaczmarek J (1994) Finite elements model for the contact of rough surfaces. Wear 177:1–13

    Article  Google Scholar 

  32. Kogut L, Etsion I (2002) Elastic-plastic contact analysis of a phere and a rigid flat. J Appl Mech Trans ASME 69:657–662

    MATH  Google Scholar 

  33. Larsson J, Biwa S, Storåkers B (1999) Inelastic flattening of rough surfaces. Mech Mater 31:29–41

    Article  Google Scholar 

  34. Faulkner A, Arnell RD (2002) The development of a finite element model to simulate the sliding interaction between two, three-dimensional, elasto-plastic, hemispherical asperities. Wear 242:114–122

    Article  Google Scholar 

  35. Lin LP, Lin JF (2007) An elliptical elastic-plastic microcontact model developed for an ellipsoid in contact with a smooth rigid flat. Wear 129:772–782

    Google Scholar 

  36. Yang J, Komvopoulos K (2005) A mechanics approach to static friction of elastic-plastic fractal surfaces. J Tribol ASME 127:315–324

    Article  Google Scholar 

  37. Hyun S, Pei L, Molinari J-F, Robbins MO (2004) Finite-element analysis of contact between elastic self-affine surfaces. Phys Rev E 70(026117):1–12

    Google Scholar 

  38. Pei L, Hyun S, Molinari J-F, Robbins MO (2005) Finite element modeling of elasto-plastic contact between rough surfaces. J Mech Phys Solids 53, 2385–2409

    Article  MATH  Google Scholar 

  39. Wriggers P (1995) Finite element algorithms for contact problems. Arch Comput Methods Eng 2:1–49

    Article  MathSciNet  Google Scholar 

  40. Thomas TR (1999) Rough surfaces, 2nd edn. Imperial College Press, London

    Google Scholar 

  41. Bhushan B (1990) Tribology and mechanics of magnetic storage devices. Springer, New York

    Google Scholar 

  42. Bhushan B (1994) Tribology of solid contacts in magnetic recording devices. Appl Mech Rev ASME 47:199–203

    Article  Google Scholar 

  43. Bhushan B (1998) Contact mechanics of rough surfaces in tribology: multiple asperity contact. Tribol Lett 4:1–35

    Article  Google Scholar 

  44. Whitehouse DJ (1994) Handbook of surface metrology. Institute of Physics Publishing, Bristol

    Google Scholar 

  45. Ciavarella M, Murolo G, Demelio G, Barber JR (2004) Elastic contact stiffness and contact resistance for Weierstrass profile. J Mech Phys Solids 52:1247–1265

    Article  MATH  Google Scholar 

  46. Ciavarella M, Delfine V, Demelio G (2006) A re-vitalized Greenwood and Willimason model of elastic contact between fractal surfaces. J Mech Phys Solids 54:2569–2591

    Article  MATH  Google Scholar 

  47. Persson BNJ, Albohr O, Trataglino U, Volokitin AI, Tosatti E (2005) On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J Phys, Condens Matter 17:R1–R62

    Article  Google Scholar 

  48. McCool JI (1986) Comparison of models for the contact of rough surfaces. Wear 107:37–60

    Article  Google Scholar 

  49. Willner K, Gaul L (1997) Contact description by FEM based on interface physics. In: Owen DRJ, Oñate E, Hinton E (eds) Proc 4th int conf COMPLAS. Pineridge Press, Swansea, pp 884–891

    Google Scholar 

  50. Zavarise G, Schrefler BA (1995) Numerical analysis of microscopically elastic contact problems. In: Raous M, Jean M, Moreau JJ (eds) Proc 2nd int contact mechanics int symp. Plenum, New York, pp 305–312

    Google Scholar 

  51. Buczkowski R, Kleiber M (1999) A stochastic model of rough surfaces for finite element contact analysis. Comput Methods Appl Mech Eng 169:43–59

    Article  MATH  Google Scholar 

  52. Buczkowski R, Kleiber M (2006) Elasto-plastic statistical model of strongly anisotropic rough surfaces for finite element 3D-contact analysis. Comput Methods Appl Mech Eng 195:5141–5161

    Article  MATH  MathSciNet  Google Scholar 

  53. Zhao Y, Maietta DM, Chang L (2000) An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J Tribol Trans ASME 122:86–93

    Article  Google Scholar 

  54. Jeng Y-R, Wang P-Y (2003) An elliptical microcontact model considering elastic, elastoplastic, and plastic deformation. J Tribol Trans ASME 125:232–240

    Article  Google Scholar 

  55. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York

    MATH  Google Scholar 

  56. Brewe DE, Hamrock BJ (1977) Simplified solution for elliptical-contact deformation between two elastic solids. J Lubr Technol Trans ASME 99:485–487

    Google Scholar 

  57. A Dyson, Evans HP, Snidle RW (1992) A simple, accurate method for calculation of stresses and deformations in elliptical Herztian contacts. Proc Inst Mech Eng Part C, J Mech Eng Sci 206:139–141

    Article  Google Scholar 

  58. Greenwood JA (1997) Analysis of elliptical Herztian contacts. Tribol Int 30:235–237

    Article  Google Scholar 

  59. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  60. Jamari J, Schipper DJ (2006) An elastic-plastic contact model of ellipsoid bodies. Tribol Lett 21:262–271

    Article  Google Scholar 

  61. Wu C, Zheng L (1988) A general expression for plasticity index. Wear 121:161–172

    Article  Google Scholar 

  62. Tabor D (1951) The hardness of metal. Oxford University Press, Oxford

    Google Scholar 

  63. Francis HA (1976) Phenomenological analysis of plastic spherical indentation. J Eng Mater Technol Trans ASME 76:272–181

    Google Scholar 

  64. Kogut L, Etsion I (2002) A finite element based elastic-plastic model for the contact of rough surfaces. Tribol Trans 46:383–390

    Article  Google Scholar 

  65. Shoukry SN (1980) Some aspects of the dynamic performance of machine tool structural joints. PhD Thesis, University of Aston in Birmingham

  66. Buczkowski R, Kleiber M (1997) Elasto-plastic interface model for 3D-frictional orthotropic contact problems. Int J Numer Methods Eng 40:599–619

    Article  MATH  Google Scholar 

  67. Maksak WI (1975) Microsliding and contact stiffness of metallic bodies. Nauka, Moscow (in Russian)

    Google Scholar 

  68. Felder E (1988) Experimental study of the frictional anisotropy of mild steel sheet. J Mech Theory Appl 7:479–504 (in French)

    Google Scholar 

  69. Jing L, Stephansson O (1995) Mechanics of rock joints: experimental aspects. In: Selvadurai APS, Boulon MJ (eds) Mechanics of geomaterial interfaces. Elsevier, Amsterdam, pp 317–342

    Google Scholar 

  70. Huber MT (1949) The friction forces and the part they play in some railway problems. Arch Mech 1:271–310 (in Polish)

    Google Scholar 

  71. Michałowski R, Mróz Z (1978) Associated and non-associated sliding rules in contact friction problems. Arch Mech 30:259–276

    MATH  Google Scholar 

  72. Zmitrowicz A (1981) A theoretical model of anisotropic dry friction. Wear 73:9–39

    Article  Google Scholar 

  73. Zmitrowicz A (1989) Mathematical descriptions of anisotropic friction. Int J Solids Struct 25:837–862

    Article  MATH  Google Scholar 

  74. Zmitrowicz A (2006) Models of kinematics dependent anisotropic and heterogenous friction. Int J Solids Struct 43:4407–4451

    Article  MATH  Google Scholar 

  75. Felder E (1986) Friction, adhesion, lubrication. A model of anisotropic solid friction. C R Acad Sci Paris Ser II 303:643–646 (1986) (in French)

    MathSciNet  Google Scholar 

  76. Ho Q-C, Curnier A (1993) Anisotropic dry friction between two orthotropic surfaces undergoing large displacements. Eur J Mech A/Solids 12:631–666

    Google Scholar 

  77. Hohberg J-H (1992) A joint element for the nonlinear dynamic analysis of arch dams. Birkhäuser, Basel

    Google Scholar 

  78. Mróz Z, Stupkiewicz S (1994) An anisotropic friction and wear model. Int J Solids Struct 31:1113–1131

    Article  Google Scholar 

  79. Konyukhov A, Schweizerhof K (2006) Covariant description for frictional contact problems. Comput Mech 35:190–213

    Google Scholar 

  80. Konyukhov A, Schweizerhof K (2006) Formulation and analysis of the computational model, Part 1. Comput Methods Appl Mech Eng 196:103–117

    Article  MATH  MathSciNet  Google Scholar 

  81. Konyukhov A, Vielsack P, Schweizerhof K (2008) On coupled models of anisotropic contact surfaces and their experimental validation. Wear 264:579–588

    Article  Google Scholar 

  82. Hjiaj M, Feng Z-Q, de Saxce G, Mróz Z (2004) On the modelling of complex anisotropic frictional contact laws. Int J Eng Sci 42:1013–1034

    Article  Google Scholar 

  83. Klarbring A (1985) A mathematical programming approach to three-dimensional contact problems. Comput Methods Appl Mech Eng 58:175–200

    Article  MathSciNet  Google Scholar 

  84. Alart P (1992) A simple contact algorithm in applied to large sliding and anisotropic friction. In: Curnier A (ed) Proc contact mechanics intern symp, October 7–9, EPLF, Lausanne, Switzerland, pp 321–336

  85. Park JK, Kwak BM (1994) Three-dimensional frictional contact analysis using the homotopy method. J Appl Mech ASME 61:703–709

    Article  MATH  Google Scholar 

  86. Barbero EJ, Luciano R, Sacco E (1995) Three-dimensional plate and contact/friction elements for laminated composite joints. Comput Struct 54:689–703

    Article  MATH  Google Scholar 

  87. Jones RE, Papadopoulos P (2006) Simulating anisotropic frictional response using smoothly interpolated traction fields. Comput Methods Appl Mech Eng 195:588–613

    Article  MATH  MathSciNet  Google Scholar 

  88. Konyukhov A, Schweizerhof K (2006) Formulation and analysis of the computational model, Part 2. Comput Methods Appl Mech Eng 196:289–303

    Article  MATH  MathSciNet  Google Scholar 

  89. Jing J, Nordlund E, Sthepansson OA (1994) 3-D constitutive model for rock joints with anisotropic friction and stress dependency in shear stiffness. Int J Rock Mech Min Sci Geomech Abstr 31:173–178

    Article  Google Scholar 

  90. Fredriksson B (1975) Experimental determination frictional properties in araldite b contacts. Rep LiTH-IKP-R-061, Linköping Institute of Technology

  91. Mindlin RD (1949) Compliance of elastic bodies in contact. J Appl Mech ASME 71:259–268

    MathSciNet  Google Scholar 

  92. Selvadurai APS, Au MC (1987) Non-linear interactions in flat anchors embedded in geological media. In: Desai CS et al. (eds) Constitutive laws for engineering materials. Theory and applications, vol II. Elsevier, New York, pp 1093–1107

    Google Scholar 

  93. Habraken A-M, Radu JP, Charlier R (1992). Numerical approach of contact with friction between two bodies in large deformations. In: Curnier A (ed) Proc contact mechanics int symp PPUR Lausanne, pp 391–408

  94. Plesha ME (1995) Rock joints: theory, constitutive equations. In: Selvadurai APS, Boulon MJ (eds) Mechanics of geomaterial interfaces. Elsevier, Amsterdam, pp 375–393

    Google Scholar 

  95. Vermeer PA, de Borst R (1984) Non-associated plasticity for soils, concrete and rock. Heron 29(3)

  96. Black AJ, Kopalinsky EM, Oxley PLB (1993) Asperity deformation models for explaining the mechanisms involved in metallic sliding friction and wear—a review. Proc Inst Mech Eng, Part C, J Mech Eng Sci 207:335–353

    Article  Google Scholar 

  97. Mróz Z, Stupkiewicz S (1998) Constitutive model of adhesive and ploughing friction in metal-forming processes. Int J Mech Sci 40:281–303

    Article  MATH  Google Scholar 

  98. Buczkowski R, Gabbert U (2004) 28-noded hexahedral isoparametric element for analysis of contact problems. Commun Numer Methods Eng 20:147–161

    Article  MATH  MathSciNet  Google Scholar 

  99. Buczkowski R (1998) 21-noded hexahedral isoparametric element for analysis of contact problems. Commun Numer Methods Eng 14:681–692

    Article  MATH  MathSciNet  Google Scholar 

  100. Klarbring A (1986) The influence of slip hardening and interface compliance on contact stress distributions. A mathematical programming approach. In: Selvadurai APS, Voyiadjis GZ (eds) Mechanics of material interfaces. Elsevier, Amsterdam, pp 43–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Buczkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buczkowski, R., Kleiber, M. Statistical Models of Rough Surfaces for Finite Element 3D-Contact Analysis. Arch Computat Methods Eng 16, 399–424 (2009). https://doi.org/10.1007/s11831-009-9037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-009-9037-2

Keywords

Navigation