Skip to main content
Log in

Hierarchic Multilayered Plate Elements for Coupled Multifield Problems of Piezoelectric Adaptive Structures: Formulation and Numerical Assessment

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The paper presents a hierarchic model for the analysis of multifield problems related to multilayered plates subjected to mechanical, electric and thermal loads. In the framework of a unified formulation (UF), the finite element method has been used to derive a complete family of plate elements distinguished from one another by the variational statement and the laminate kinematic assumptions upon which each of them is based. Depending on the accuracy required by the analysis, the most appropriate element can be easily derived choosing the primary unknowns of the model by selecting between displacement or partially mixed formulations (Principle of Virtual Displacement, Reissner’s mixed variational theorem). The complete derivation of fully coupled variational statements (classical and partially mixed) is also given for thermopiezoelastic analysis. The description of the unknowns can then be chosen between global (ESL) and layerwise (LW). Finally the order of the expansion can be set in the range from 1 to 4 thus selecting first order or higher order plate models. Then, results in form of tables and graphs are given in order to validate the proposed elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heyliger P (1994) Static behavior of laminated elastic/piezoelectric plates. Am Inst Aeronaut Astronaut J 32:2481–2484

    MATH  Google Scholar 

  2. Xu K, Noor AK, Tang YY (1997) Three dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates. Comput Methods Appl Mech Eng 141:125–139

    Article  MATH  Google Scholar 

  3. Benjeddou A, Deü JF (2002) A two dimensional closed-form solution for the free-vibrations analysis of piezoelectric sandwich plates. Int J Solids Struct 39:1463–1486

    Article  MATH  Google Scholar 

  4. Ballhause D, D’Ottavio M, Kröplin B, Carrera E (2005) A unified formulation to assess multilayered theories for piezoelectric plates. Comput Struct 83(15–16):1217–1235

    Article  Google Scholar 

  5. Oh J, Cho M (2004) A finite element based on cubic zig-zag plate theory for the prediction of thermo-electric-mechanical behaviors. Int J Solids Struct 41:1357–1375

    Article  MATH  Google Scholar 

  6. Robaldo A, Carrera E, Benjeddou A (2006) A unified formulation for finite element analysis of piezoelectric adaptive plates. Comput Struct 84:1494–1505

    Article  Google Scholar 

  7. Carrera E (1995) A Class of two dimensional theories for multilayered plates analysis. Atti Acad Sci Torino Mem Sci Fis 19–20:49–87

    MathSciNet  Google Scholar 

  8. Carrera E (2003) Historical review of zig-zag theories for multilayered plates and shells. Appl Mech Rev 56:287–308

    Article  Google Scholar 

  9. Carrera E, Demasi L (2002) Multilayered finite plate element based on Reissner mixed variational theorem. Part I: theory, and Part II: numerical analysis. Int J Numer Methods Eng 55:191–231, 253–291

    Article  MATH  MathSciNet  Google Scholar 

  10. Reissner E (1984) On a certain mixed variational theorem and a proposed application. Int J Numer Methods Eng 20:1366–1368

    Article  MATH  Google Scholar 

  11. D’Ottavio M, Kröplin B (2006) An extension of Reissner mixed variational theorem to piezoelectric laminates. Mech Adv Mater Sruct 13(2):139–150

    Article  Google Scholar 

  12. Robaldo A (2006). Classical and mixed finite elements for thermoelectromechanical analysis of multilayered anisotropic plates. PhD Thesis at DIASP, Politecnico di Torino, Torino, Italy

  13. Murakami H (1993) Assessment of plate theories for treating the thermomechanical response of layered plates. Compos Eng 3(2):137–143

    Article  Google Scholar 

  14. Heyliger PR, Ramirez G, Saravanos DA (1994) Coupled discrete-layer finite elements for laminated piezoelectric plates. Commun Numer Methods Eng 10:971–981

    Article  MATH  Google Scholar 

  15. Suleman A, Venkayya VB (1995) A simple finite element formulation for a laminated composite plate with piezoelectric layers. J Intell Mater Syst Struct 6:776–782

    Article  Google Scholar 

  16. Saravanos DA, Heyliger PR, Hopkins DA (1997) Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates. Int J Solids Struct 34(3):359–378

    Article  MATH  Google Scholar 

  17. Correia VMF, Gomes MAA, Suleman A, Soares CMM, Soares CAM (2000) Modeling and design of adaptive composite structures. Comput Methods Appl Mech Eng 185:325–346

    Article  MATH  Google Scholar 

  18. Carrera E (1997) An improved Reissner-Mindlin type model for the electro-mechanical analysis of multilayered plates including piezo-layers. J Intell Mater Syst Struct 8:232–248

    Article  Google Scholar 

  19. Reddy JN (1997) Mechanics of laminated composite plates—theory and analysis. CRC Press Inc, Boca Raton

    MATH  Google Scholar 

  20. Nowinski JL (1978) Theory of thermoelasticity with applications. Sijthoff and Noordhoff, Alphen aan den Rijn

    MATH  Google Scholar 

  21. Benjeddou A, Andrianarison O (2005) A thermopiezoelectric mixed variational theorem for smart multilayered composites. Comput Struct 83:1266–1276

    Article  Google Scholar 

  22. Altay G, Dökmeci M (1996) Fundamental variational equations of discontinuous thermopiezoelectric fields. Int J Eng Sci 34(7):769–782

    Article  MATH  Google Scholar 

  23. Altay G, Dökmeci M (2001) Coupled thermoelastic shell equations with second sound for high-frequency vibrations of temperature-dependent materials. Int J Solids Struct 38:2737–2768

    Article  MATH  Google Scholar 

  24. Mindlin RD (1974) Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int J Solids Struct 10:625–632

    Article  MATH  Google Scholar 

  25. Tiersten HF (1969) Linear piezoelectric plate vibrations. Plenum, New York

    Google Scholar 

  26. Tzou HS, Bao Y (1994) A theory on anisotropic piezothermoelastic shell laminates with sensor actuator applications. J Sound Vib 184(3):453–473

    Article  Google Scholar 

  27. Carrera E (2000) An assessment of mixed and classical theories for thermal stress analysis of orthotropic plates. J Therm Stress 23:797–831

    Article  Google Scholar 

  28. Benjeddou A (2000) Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput Struct 76:347–363

    Article  Google Scholar 

  29. Bhaskar K, Varadan TK, Ali JSM (1986) Thermoelastic solution for orthotropic and anisotropic composites laminates. Compos Part B 27:415–420

    Article  Google Scholar 

  30. Tungikar VB, Rao KM (1994) Three dimensional exact solution of thermal stresses in rectangular composite laminate. Compos Struct 27:419–430

    Article  Google Scholar 

  31. Carrera E (2002) Temperature profile influence on layered plates response considering classical and advanced theories. Am Inst Aeronaut Astronaut J 40:1885–1896

    Google Scholar 

  32. Ali JSM, Bhaskar K, Varadan TK (1999) A new theory for accurate thermal/mechanical flexural analysis of symmetric laminated plates. Compos Struct 45:227–232

    Article  Google Scholar 

  33. Heyliger PR, Saravanos DA (1995) Exact free vibration analysis of laminated plates with embedded piezoelectric layers. J Acoust Soc Am 98(3):1547–1557

    Article  Google Scholar 

  34. Ballhause D (2003). Assessment of multilayered theories for piezoelectric plates using a unified formulation. Master Thesis, Universität Stuttgart, Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Carrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrera, E., Boscolo, M. & Robaldo, A. Hierarchic Multilayered Plate Elements for Coupled Multifield Problems of Piezoelectric Adaptive Structures: Formulation and Numerical Assessment. Arch Computat Methods Eng 14, 383–430 (2007). https://doi.org/10.1007/s11831-007-9012-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-007-9012-8

Keywords

Navigation