Skip to main content
Log in

A mixed finite element model with enhanced zigzag kinematics for the non-linear analysis of multilayer plates

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the present work, a non-linear finite element model for the analysis of composite and sandwich plates is proposed. The underlying variational formulation is based on the kinematics of the refined zigzag theory (RZT) as well as on a modified version of the two-field Hellinger–Reissner (HR) functional, where the displacements and the transverse shear stresses are involved as independent field variables. In fact, a consistent expression for each shear stress function is obtained by integrating the local equilibrium equations written in terms of derivated strain components. Regardless of the number of material layers, the proposed four-node plate element, which is labeled HR–RZT, exhibits only seven nodal degrees of freedom. The additionally introduced variables are effectively eliminated on the element level. One key advantage of the HR–RZT formulation is the fact that interlayer-continuity of the transverse shear stresses is automatically obtained without resorting to any post-processing procedures. The same applies to the zero stress conditions at the outer surfaces of the laminate. Further, due to the enhanced kinematics, the layerwise distortion of the laminate’s cross-section can also be accurately captured. The performance of the novel element formulation is studied by several numerical applications, where the solutions of the two-dimensional HR–RZT elements are verified by comparison with fully three-dimensional finite element models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Altenbach H, Altenbach J, Kissing W (2018) Mechanics of composite structural elements. Springer, Singapore

    Google Scholar 

  2. Ambartsumian S (1958) On a general theory of anisotropic shells. J Appl Math Mech 22(2):305–319

    MathSciNet  Google Scholar 

  3. Auricchio F, Sacco E (1999) A mixed-enhanced finite-element for the analysis of laminated composite plates. Int J Numer Methods Eng 44(10):1481–1504

    MATH  Google Scholar 

  4. Auricchio F, Sacco E (2003) Refined first-order shear deformation theory models for composite laminates. J Appl Mech 70(3):381–390

    MATH  Google Scholar 

  5. Auricchio F, Balduzzi G, Khoshgoftar M, Rahimi G, Sacco E (2014) Enhanced modeling approach for multilayer anisotropic plates based on dimension reduction method and Hellinger–Reissner principle. Compos Struct 118:622–633

    Google Scholar 

  6. Averill R (1994) Static and dynamic response of moderately thick laminated beams with damage. Compos Eng 4(4):381–395

    Google Scholar 

  7. Brank B, Carrera E (2000) Multilayered shell finite element with interlaminar continuous shear stresses: a refinement of the Reissner–Mindlin formulation. Int J Numer Methods Eng 48(6):843–874

    MATH  Google Scholar 

  8. Carrera E (1996) \(C^0\) Reissner–Mindlin multilayered plate elements including zig-zag and interlaminar stress continuity. Int J Numer Methods Eng 39(11):1797–1820

    MATH  Google Scholar 

  9. Carrera E (1997) \(c_z^0\) requirements—models for the two dimensional analysis of multilayered structures. Compos Struct 37(3–4):373–383

    Google Scholar 

  10. Carrera E (1998) Evaluation of layerwise mixed theories for laminated plates analysis. AIAA J 36(5):830–839

    Google Scholar 

  11. Carrera E (2000) A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates. Compos Struct 48(4):245–260

    Google Scholar 

  12. Carrera E, Demasi L (2002) Classical and advanced multilayered plate elements based upon pvd and rmvt. Part 1: derivation of finite element matrices. Int J Numer Methods Eng 55(2):191–231

    MATH  Google Scholar 

  13. Carrera E, Demasi L (2002) Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: numerical implementations. Int J Numer Methods Eng 55(3):253–291

    MATH  Google Scholar 

  14. Carrera E (2002) Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch Comput Methods Eng 9(2):87–140

    MathSciNet  MATH  Google Scholar 

  15. Carrera E (2003) Historical review of zig-zag theories for multilayered plates and shells. Appl Mech Rev 56(3):287–308

    MathSciNet  Google Scholar 

  16. Carrera E (2003) Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Arch Comput Methods Eng 10(3):215–296

    MathSciNet  MATH  Google Scholar 

  17. Carrera E (2004) On the use of the murakami’s zig-zag function in the modeling of layered plates and shells. Comput Struct 82(7–8):541–554

    Google Scholar 

  18. Di Sciuva M (1986) Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model. J Sound Vib 105(3):425–442

    Google Scholar 

  19. Di Sciuva M (1987) An improved shear-deformation theory for moderately thick multilayered anisotropic shells and plates. J Appl Mech 54(3):589–596

    MATH  Google Scholar 

  20. Di Sciuva M (1992) Multilayered anisotropic plate models with continuous interlaminar stresses. Compos Struct 22(3):149–167

    Google Scholar 

  21. Dvorkin E, Bathe KJ (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1(1):77–88

    Google Scholar 

  22. Eijo A, Oñate E, Oller S (2013) A four-noded quadrilateral element for composite laminated plates/shells using the refined zigzag theory. Int J Numer Methods Eng 95(8):631–660

    MathSciNet  MATH  Google Scholar 

  23. Gherlone M, Tessler A, Di Sciuva M (2011) \(C^0\) beam elements based on the refined zigzag theory for multilayered composite and sandwich laminates. Compos Struct 93(11):2882–2894

    Google Scholar 

  24. Gruttmann F, Wagner W, Meyer L, Wriggers P (1993) A nonlinear composite shell element with continuous interlaminar shear stresses. Comput Mech 13(3):175–188

    MATH  Google Scholar 

  25. Gruttmann F, Wagner W (1994) On the numerical analysis of local effects in composite structures. Compos Struct 29(1):1–12

    Google Scholar 

  26. Gruttmann F, Wagner W, Knust G (2016) A coupled global-local shell model with continuous interlaminar shear stresses. Comput Mech 57(2):237–255

    MathSciNet  MATH  Google Scholar 

  27. Gruttmann F, Wagner W (2017) Shear correction factors for layered plates and shells. Comput Mech 59(1):129–146

    MathSciNet  MATH  Google Scholar 

  28. Gruttmann F, Knust G, Wagner W (2017) Theory and numerics of layered shells with variationally embedded interlaminar stresses. Comput Methods Appl Mech Eng 326:713–738

    MathSciNet  Google Scholar 

  29. Iurlaro L, Gherlone M, Di Sciuva M, Tessler A (2015) Refined zigzag theory for laminated composite and sandwich plates derived from Reissner’s mixed variational theorem. Compos Struct 133:809–817

    Google Scholar 

  30. Kant T, Manjunatha B (1994) On accurate estimation of transverse stresses in multilayer laminates. Comput Struct 50(3):351–365

    Google Scholar 

  31. Kant T, Swaminathan K (2002) Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory. Compos Struct 56(4):329–344

    Google Scholar 

  32. Klinkel S, Gruttmann F, Wagner W (1999) A continuum based three-dimensional shell element for laminated structures. Comput Struct 71(1):43–62

    Google Scholar 

  33. Klinkel S, Gruttmann F, Wagner W (2006) A robust non-linear solid shell element based on a mixed variational formulation. Comput Methods Appl Mech Eng 195(1):179–201

    MATH  Google Scholar 

  34. Malkus D, Hughes T (1978) Mixed finite element methods-reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15(1):63–81

    MATH  Google Scholar 

  35. Murakami H (1986) Laminated composite plate theory with improved in-plane responses. J Appl Mech 53(3):661–666

    MATH  Google Scholar 

  36. Oñate E, Eijo A, Oller S (2012) Simple and accurate two-noded beam element for composite laminated beams using a refined zigzag theory. Comput Methods Appl Mech Eng 213:362–382

    Google Scholar 

  37. Reddy J (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51(4):745–752

    MATH  Google Scholar 

  38. Reddy J, Robbins D (1994) Theories and computational models for composite laminates. Appl Mech Rev 47(6):147–169

    Google Scholar 

  39. Reddy J (2003) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  40. Rolfes R, Rohwer K (1997) Improved transverse shear stresses in composite finite elements based on first order shear deformation theory. Int J Numer Methods Eng 40(1):51–60

    Google Scholar 

  41. Rolfes R, Noor A, Sparr H (1998) Evaluation of transverse thermal stresses in composite plates based on first-order shear deformation theory. Comput Methods Appl Mech Eng 167(3–4):355–368

    MATH  Google Scholar 

  42. Schürg M, Wagner W, Gruttmann F (2009) An enhanced fsdt model for the calculation of interlaminar shear stresses in composite plate structures. Comput Mech 44(6):765–776

    MATH  Google Scholar 

  43. Taylor R (2019) FEAP-A finite element analysis program. http://projects.ce.berkeley.edu/feap/

  44. Tessler A, Hughes T (1985) A three-node mindlin plate element with improved transverse shear. Comput Methods Appl Mech Eng 50(1):71–101

    MATH  Google Scholar 

  45. Tessler A, Di Sciuva M, Gherlone M (2009) A refined zigzag beam theory for composite and sandwich beams. J Compos Mater 43(9):1051–1081

    Google Scholar 

  46. Tessler A, Di Sciuva M, Gherlone M (2010) A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics. J Mech Mater Struct 5(2):341–367

    Google Scholar 

  47. Tessler A (2015) Refined zigzag theory for homogeneous, laminated composite, and sandwich beams derived from Reissner’s mixed variational principle. Meccanica 50(10):2621–2648

    MathSciNet  MATH  Google Scholar 

  48. Toledano A, Murakami H (1987) A composite plate theory for arbitrary laminate configurations. J Appl Mech 54(1):181–189

    MATH  Google Scholar 

  49. Versino D, Gherlone M, Mattone M, Di Sciuva M, Tessler A (2013) \(C^0\) triangular elements based on the refined zigzag theory for multilayer composite and sandwich plates. Compos B Eng 44(1):218–230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Köpple.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Components of \({\mathbf {T}}_{\alpha 0}^k\):

$$\begin{aligned} A_{\alpha 0}^k= & {} \sum _{i=1}^{k-1}C_{p\alpha }^ih^i\nonumber \\ B_{\alpha 0}^k= & {} \sum _{i=1}^{k-1}C_{p\alpha }^ih^iz_s^i\nonumber \\ C_{\alpha 0}^k= & {} \sum _{i=1}^{k-1}C_{p\alpha }^ih^i\left( {\bar{\phi }}_\alpha ^i-\frac{h^i}{2}\beta _\alpha ^i\right) \end{aligned}$$
(91)

Components of \({\widehat{{\mathbf {T}}}}_\alpha ^k(z)\):

$$\begin{aligned} {\widehat{A}}_\alpha ^k(z)= & {} C_{p\alpha }^k\left( z-z^{k-1}\right) \nonumber \\ {\widehat{B}}_\alpha ^k(z)= & {} \frac{1}{2}C_{p\alpha }^k\left( z^2-{z^{k-1}}^2\right) \nonumber \\ {\widehat{C}}_\alpha ^k(z)= & {} C_{p\alpha }^k\left( {\widehat{\phi }}_\alpha ^{k(0)}+z{\widehat{\phi }}_\alpha ^{k(1)}+z^2{\widehat{\phi }}_\alpha ^{k(2)}\right) \end{aligned}$$
(92)

with

$$\begin{aligned} {\widehat{\phi }}_\alpha ^{k(0)}= & {} \left( h^k\beta _\alpha ^k+\frac{1}{2}{z^{k-1}}\beta _\alpha ^k-{\bar{\phi }}_\alpha ^k\right) z^{k-1}\nonumber \\ {\widehat{\phi }}_\alpha ^{k(1)}= & {} {\bar{\phi }}_\alpha ^k-h^k\beta _\alpha ^k-z^{k-1}\beta _\alpha ^k\nonumber \\ {\widehat{\phi }}_\alpha ^{k(2)}= & {} \frac{1}{2}\beta _\alpha ^k \end{aligned}$$
(93)

Components of \({\widetilde{{\mathbf {T}}}}_\alpha \):

$$\begin{aligned} {\widetilde{A}}_\alpha= & {} A_{\alpha 0}^{{ nlay}+1}=\sum _{i=1}^{{ nlay}}h^i\nonumber \\ {\widetilde{B}}_\alpha= & {} B_{\alpha 0}^{{ nlay}+1}=\sum _{i=1}^{{ nlay}}C_{p\alpha }^ih^iz_s^i\nonumber \\ {\widetilde{C}}_\alpha= & {} C_{\alpha 0}^{{ nlay}+1}=\sum _{i=1}^{{ nlay}}C_{p\alpha }^ih^i\left( {\bar{\phi }}_\alpha ^i-\frac{h^i}{2}\beta _\alpha ^i\right) \end{aligned}$$
(94)

Components of \({\overline{{\mathbf {T}}}}_\alpha ^k\):

$$\begin{aligned} B_\alpha ^{k(0)}= & {} \frac{1}{{\widetilde{A}}_\alpha }\left( A_{\alpha 0}^k-C_{p\alpha }^kz^{k-1}\right) {\widetilde{B}}_\alpha -B_{\alpha 0}^k+\frac{1}{2}C_{p\alpha }^k{z^{k-1}}^2\nonumber \\ B_\alpha ^{k(1)}= & {} \frac{1}{{\widetilde{A}}_\alpha }C_{p\alpha }^k{\widetilde{B}}_\alpha \nonumber \\ B_\alpha ^{k(2)}= & {} -\frac{1}{2}C_{p\alpha }^k\nonumber \\ C_\alpha ^{k(0)}= & {} \frac{1}{{\widetilde{A}}_\alpha }\left( A_{\alpha 0}^k-C_{p\alpha }^kz^{k-1}\right) {\widetilde{C}}_\alpha -C_{\alpha 0}^k-C_{p\alpha }^k{\widehat{\phi }}_\alpha ^{k(0)}\nonumber \\ C_\alpha ^{k(1)}= & {} \frac{1}{{\widetilde{A}}_\alpha }C_{p\alpha }^k{\widetilde{C}}_\alpha -C_{p\alpha }^k{\widehat{\phi }}_\alpha ^{k(1)}\nonumber \\ C_\alpha ^{k(2)}= & {} -\,C_{p\alpha }^k{\widehat{\phi }}_\alpha ^{k(2)} \end{aligned}$$
(95)

Appendix 2

Standard FSDT constitutive matrices:

$$\begin{aligned}&{\mathbf {D}}_m^k={\mathbf {C}}_p^k\int \limits _{h^k}1\;\text{ d }z={\mathbf {C}}_p^k\,h^k\nonumber \\&{\mathbf {D}}_{mb}^k={\mathbf {C}}_p^k\int \limits _{h^k}z\;\text{ d }z={\mathbf {C}}_p^k\,h^kz_s^k\nonumber \\&{\mathbf {D}}_b^k={\mathbf {C}}_p^k\int \limits _{h^k}z^2\;\text{ d }z={\mathbf {C}}_p^k\,h^k\left( {z_s^k}^2+\frac{{h^k}^2}{12}\right) \end{aligned}$$
(96)

Additional zigzag contributions:

$$\begin{aligned} {\mathbf {D}}_{mmb\phi }^k={\mathbf {C}}_p^k\int \limits _{h^k}\left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \phi _x^k &{} 0 &{} 0 &{} 0 \\ 0 &{} \phi _y^k &{} 0 &{} 0 \\ 0 &{} 0 &{} \phi _x^k &{} \phi _y^k \\ \end{array} \right] \text{ d }z\end{aligned}$$
(97)

with

$$\begin{aligned} \int \limits _{h^k}\phi _\alpha ^k\;\text{ d }z=h^k\left( {\bar{\phi }}_\alpha ^k-\frac{h^k}{2}\beta _\alpha ^k\right) \end{aligned}$$
(98)

and

$$\begin{aligned} {\mathbf {D}}_{bmb\phi }^k={\mathbf {C}}_p^k\int \limits _{h^k}\left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} z\phi _x^k &{} 0 &{} 0 &{} 0 \\ 0 &{} z\phi _y^k &{} 0 &{} 0 \\ 0 &{} 0 &{} z\phi _x^k &{} z\phi _y^k \\ \end{array} \right] \text{ d }z\end{aligned}$$
(99)

with

$$\begin{aligned} \int \limits _{h^k}z\phi _\alpha ^k\;\text{ d }z=h^k\left[ {\bar{\phi }}_\alpha ^kz_s^k+\frac{h^k}{2}\beta _\alpha ^k\left( \frac{{h^k}}{6}-z_s^k\right) \right] \end{aligned}$$
(100)

and

$$\begin{aligned} {\mathbf {D}}_{mb\phi }^k=\int \limits _{h^k}\left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} C_{p11}^k\,{\phi _x^k}^2 &{} C_{p12}^k\,\phi _x^k\phi _y^k &{} C_{p13}^k{\phi _x^k}^2 &{} C_{p13}^k\,\phi _x^k\phi _y^k \\ &{} C_{p22}^k\,{\phi _y^k}^2 &{} C_{p23}^k\phi _x^k\phi _y^k &{} C_{p23}^k\,{\phi _y^k}^2 \\ &{} &{} C_{p33}^k{\phi _x^k}^2 &{} C_{p33}^k\,\phi _x^k\phi _y^k \\ \text {sym.} &{} &{} &{} C_{p33}^k\,{\phi _y^k}^2 \\ \end{array} \right] \text{ d }z\nonumber \\ \end{aligned}$$
(101)

with

$$\begin{aligned} \int \limits _{h^k}{\phi _\alpha ^k}^2\;\text{ d }z= & {} h^k\left( {{\bar{\phi }}{_\alpha ^k}}^2-{\bar{\phi }}_\alpha ^kh^k\beta _\alpha ^k+\frac{{h^k}^2}{3}{\beta _\alpha ^k}^2\right) \end{aligned}$$
(102)
$$\begin{aligned} \int \limits _{h^k}\phi _x^k\phi _y^k\;\text{ d }z&{=}&h^k\left[ {\bar{\phi }}_x^k{\bar{\phi }}_y^k{-}\frac{h^k}{2}\left( {\bar{\phi }}_x^k\beta _y^k{+}{\bar{\phi }}_y^k\beta _x^k\right) {+}\frac{\beta _x^k\beta _y^k{h^k}^2}{3}\right] \nonumber \\ \end{aligned}$$
(103)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köpple, M., Wagner, W. A mixed finite element model with enhanced zigzag kinematics for the non-linear analysis of multilayer plates. Comput Mech 65, 23–40 (2020). https://doi.org/10.1007/s00466-019-01750-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01750-y

Keywords

Navigation