Skip to main content
Log in

Trefftz-Based Methods for Time-Harmonic Acoustics

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Over the last decade, Computer Aided Engineering (CAE) tools have become essential in the assessment and optimization of the acoustic characteristics of products and processes. The possibility of evaluating these characteristics on virtual prototypes at almost any stage of the design process reduces the need for very expensive and time consuming physical prototype testing. However, despite their steady improvements and extensions, CAE techniques are still primarily used by analysis specialists. In order to turn them into easy-to-use, versatile tools that are also easily accessible for designers, several bottlenecks have to be resolved. The latter include, amongst others, the lack of efficient numerical techniques for solving system-level functional performance models in a wide frequency range. This paper reviews the CAE modelling techniques which can be used for the analysis of time-harmonic acoustic problems and focusses on techniques which have the Trefftz approach as baseline methodology. The basic properties of the different methods are highlighted and their strengths and limitations are discussed. Furthermore, an overview is given of the state-of-the-art of the extensions and the enhancements which have been recently investigated to enlarge the application range of the different techniques. Specific attention is paid to one very promising Trefftz-based technique, which is the so-called wave based method. This method has all the necessary attributes for putting a next step in the evolution towards truly virtual product design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morse P, Ingard K (1968) Theoretical acoustics. McGraw-Hill, New York

    Google Scholar 

  2. Pierce A (1981) Acoustics: an introduction to its physical principles and applications. McGraw-Hill series in mechanical engineering. McGraw-Hill, New York

    Google Scholar 

  3. Zienkiewicz OC, Taylor RL, Zhu JZ, Nithiarasu P (2005) The finite element method—the three volume set, 6th edn. Butterworth-Heinemann, London

    Google Scholar 

  4. Ihlenburg F (1998) Finite element analysis of acoustic scattering. Applied Mathematical Sciences, vol 132. Springer, New York

    MATH  Google Scholar 

  5. Brebbia CA, Telles JCF, Wrobel LCL (1984) Boundary element techniques: theory and applications in engineering. Springer, New York

    MATH  Google Scholar 

  6. Kirkup S (1998) The boundary element method in acoustics. Integrated Sound Software

  7. Von Estorff O (2000) Boundary elements in acoustics: advances and applications. WIT Press

  8. Zienkiewicz OC (2000) Achievements and some unsolved problems of the finite element method. Int J Num Methods Eng 47:9–28

    MATH  MathSciNet  Google Scholar 

  9. Proceedings of the fifth world congress on computational mechanics, Vienna, Austria, 2002

  10. Proceedings of the European congress on computational methods in applied sciences and engineering, Jyvaskyla, Finland, 2004

  11. Proceedings of the 2004 international conference on noise and vibration engineering, Leuven, Belgium, 2004

  12. Proceedings of the 13th international congress on sound and vibration, Vienna, Austria, 2006

  13. Proceedings of the 2006 international conference on noise and vibration engineering, Leuven, Belgium, 2006

  14. Desmet W (2002) Mid-frequency vibro-acoustic modelling: challenges and potential solutions. In: Proceedings of the 2002 international conference on noise and vibration engineering, Leuven, Belgium, pp 835–862

  15. Harari I (2006) A survey of finite element methods for time-harmonic acoustics. Comput Methods Appl Mech Eng 195:1594–1607

    MATH  MathSciNet  Google Scholar 

  16. Thompson LL (2006) A review of finite element methods for time-harmonic acoustics. J Acoust Soc Am 119:1315–1330

    Google Scholar 

  17. Trefftz E (1926) Ein Gegenstück zum Ritzschen Verfahren. In: Proceedings of the 2nd international congress on applied mechanics, Zürich, Switzerland, pp 131–137

  18. Jirousek J, Wróblewski A (1996) T-elements: state of the art and future trends. Arch Comput Methods Eng 3:323–434

    Google Scholar 

  19. Kita E, Kamiya N (1995) Trefftz method: an overview. Adv Eng Softw 24:3–12

    MATH  Google Scholar 

  20. Desmet W, Van Hal B, Sas P, Vandepitte D (2002) A computationally efficient prediction technique for the steady-state dynamic analysis of coupled vibro-acoustic systems. Adv Eng Softw 33:527–540

    MATH  Google Scholar 

  21. Van Hal B, Desmet W, Vandepitte D, Sas P (2003) A coupled finite element—wave based approach for the steady-state dynamic analysis of acoustic systems. J Comput Acoust 11:255–283

    MathSciNet  Google Scholar 

  22. Pluymers B, Desmet W, Vandepitte D, Sas P (2004) Application of an efficient wave based prediction technique for the analysis of vibro-acoustic radiation problems. J Comput Appl Math 168:353–364

    MATH  MathSciNet  Google Scholar 

  23. Pluymers B, Desmet W, Vandepitte D, Sas P (2005) On the use of a wave based prediction technique for steady-state structural-acoustic radiation analysis. J Comput Model Eng Sci 7(2):173–184

    MATH  Google Scholar 

  24. Van Hal B, Desmet W, Vandepitte D (2005) Hybrid finite element–wave based method for steady-state interior structural-acoustic problems. Comput Struct 83:167–180

    Google Scholar 

  25. Colton D, Kress R (1998) Inverse acoustic and electromagnetic scattering theory, 2nd edn. Springer, New York

    MATH  Google Scholar 

  26. Desmet W (2006) Boundary element method in acoustics. Course notes ISAAC17: seminar on advanced techniques in applied and numerical acoustics, Leuven, Belgium, September 2006

  27. Wolf JP, Song C (1996) Finite element modelling of unbounded media. Wiley, Chichester

    MATH  Google Scholar 

  28. Thompson LL, Pinsky PM (2004) Acoustics. Encyclopedia of computational mechanics

  29. Shirron JJ, Babuška I (1998) A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems. Comput Methods Appl Mech Eng 164:121–139

    MATH  Google Scholar 

  30. Givoli D (2004) High-order local non-reflecting boundary conditions: a review. Wave Motion 39:319–326

    MATH  MathSciNet  Google Scholar 

  31. Keller JB, Givoli D (1989) Exact non-reflecting boundary conditions. J Comput Phys 82:172–192

    MATH  MathSciNet  Google Scholar 

  32. Harari I, Patlashenko I, Givoli D (1998) Dirichlet-to-Neumann maps for unbounded wave guides. J Comput Phys 143:200–223

    MATH  MathSciNet  Google Scholar 

  33. Nicholls DP, Nigam N (2004) Exact non-reflecting boundary conditions on general domains. J Comput Phys 194:278–303

    MATH  MathSciNet  Google Scholar 

  34. Bettess P (1992) Infinite elements. Penshaw

  35. Gerdes K (2000) A review of infinite element methods for exterior Helmholtz problems. J Comput Acoust 8:43–62

    MathSciNet  Google Scholar 

  36. Burnett DS, Holford RL (1998) Prolate and oblate spheroidal acoustic infinite elements. Comput Methods Appl Mech Eng 158:117–141

    MATH  MathSciNet  Google Scholar 

  37. Burnett DS, Holford RL (1998) An ellipsoidal acoustic infinite element. Comput Methods Appl Mech Eng 164:49–76

    MATH  MathSciNet  Google Scholar 

  38. Astley RJ, Macaulay GJ, Coyette JP (1994) Mapped wave envelope elements for acoustical radiation and scattering. J Sound Vib 170:97–118

    MATH  Google Scholar 

  39. Astley RJ, Macaulay GJ, Coyette JP, Cremers L (1998) Three-dimensional wave-envelope elements of variable order for acoustic radiation and scattering. Part I. Formulation in the frequency domain. J Acoust Soc Am 103:49–63

    Google Scholar 

  40. Astley RJ, Coyette JP (2001) The performance of spheroidal infinite elements. Int J Numer Methods Eng 52:1379–1396

    MATH  Google Scholar 

  41. Berenger J-P (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200

    MATH  MathSciNet  Google Scholar 

  42. Collino F, Monk P (1998) The perfectly matched layer in curvilinear coordinates. SIAM J Sci Comput 19:2061–2090

    MATH  MathSciNet  Google Scholar 

  43. Bouillard P, Ihlenburg F (1999) Error estimation and adaptivity for the finite element method in acoustics: 2D and 3D applications. Comput Methods Appl Mech Eng 176:147–163

    MATH  Google Scholar 

  44. Bartsch G, Wulf C (2003) Adaptive multigrid for Helmholtz problems. J Comput Acoust 11:341–350

    MathSciNet  Google Scholar 

  45. Harari I, Avraham D (1997) High-order finite element methods for acoustic problems. J Comput Acoust 5:33–51

    Google Scholar 

  46. Dey S, Datta DK, Shirron JJ, Shephard MS (2006) p-Version FEM for structural acoustics with a posteriori error estimation. Comput Methods Appl Mech Eng 195:1946–1957

    MATH  Google Scholar 

  47. Burnett DS (2004) 3D Structural acoustic modelling with hp-adaptive finite elements. In: Proceedings of the XXI international congress of theoretical and applied mechanics ICTAM, Warsaw, Poland

  48. Ainsworth M, Oden TJ (1997) Posteriori error estimation in finite element analysis. Comput Methods Appl Mech Eng 142:1–88

    MATH  MathSciNet  Google Scholar 

  49. Zienkiewicz OC (2006) The background of error estimation and adaptivity in finite element computations. Comput Methods Appl Mech Eng 195:207–213

    MATH  MathSciNet  Google Scholar 

  50. Oden JT, Prudhomme S, Demkowicz L (2005) A posteriori error estimation for acoustic wave propagation. Arch Comput Methods Eng 12:343–390

    MATH  MathSciNet  Google Scholar 

  51. Thompson LL, Kunthong P (2005) A residual based variational method for reducing dispersion error in finite element methods. In: Proceedings of the 2005 ASME international mechanical engineering congress and exposition, Orlando, Florida, USA, paper IMECE2005-80551

  52. Guddati MN, Yue B (2004) Modified integration rules for reducing dispersion error in finite element methods. Comput Methods Appl Mech Eng 193:275–287

    MATH  Google Scholar 

  53. Duff I (1998) Direct methods. Technical Report RAL-TR-1998-054, Rutherford Appleton Laboratory, Oxon, USA

  54. Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia

    MATH  Google Scholar 

  55. Craig RR Jr (1981) Structural dynamics: an introduction to computer methods. Wiley, New York

    Google Scholar 

  56. Bennighof JK, Kaplan MF (1998) Frequency window implementation of adaptive multi-level substructuring. J Vib Acoust 120:409–418

    Google Scholar 

  57. Bennighof JK, Kaplan MF, Muller MB, Kim M (2000) Meeting the NVH computational challenge: automated multi-level substructuring. In: Proceedings of the international modal analysis conference XVIII, San Antonio, USA, pp 909–915

  58. Kropp A, Heiserer D (2003) Efficient broadband vibro-acoustic analysis of passenger car bodies using an FE-based component mode synthesis approach. J Comput Acoust 11:139–157

    Google Scholar 

  59. Stryczek R, Kropp A, Wegner S (2004) Vibro-acoustic computations in the mid-frequency range: efficiency, evaluation and validation. In: Proceedings of the international conference on noise and vibration engineering ISMA2004, Leuven, Belgium, pp 1603–1612

  60. Després B (1991) Méthodes de décomposition de domaine pour les problémes de propagation d’ondes en régime harmonique. PhD thesis, Paris IX Dauphine, Paris, France

  61. Cai X, Casarin M, Elliott F Jr, Widlund O (1998) Overlapping Schwartz algorithms for solving Helmholtz’s equation. Contemp Math 218:391–399

    MathSciNet  Google Scholar 

  62. Farhat C, Macedo A, Lesoinne M (2000) A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems. Numer Math 85:283–308

    MATH  MathSciNet  Google Scholar 

  63. Farhat C, Roux F-X (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32:1205–1227

    MATH  Google Scholar 

  64. Farhat C, Macedo A, Lesoinne M, Roux F-X, Magoules F, de La Bourdonnaie A (2000) Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems. Comput Methods Appl Mech Eng 184:213–239

    MATH  Google Scholar 

  65. Datta DK, Dey S, Shirron JJ (2005) Scalable three-dimensional acoustics using hp-finite/infinite elements and FETI-DP. In: Proceedings of the 16th international domain decomposition conference, New York, USA

  66. Magoules F (2006) Decomposition of domains in acoustics. http://www.iecn.u-nancy.fr/~magoules/pai/greenwich/aeroacoustics2/

  67. Mandel J (2002) An iterative substructuring method for coupled fluid-solid acoustic problems. J Comput Phys 177:95–116

    MATH  MathSciNet  Google Scholar 

  68. Harari I, Magoules F (2004) Numerical investigations of stabilized finite element computations for acoustics. Wave Motion 39:339–349

    MATH  MathSciNet  Google Scholar 

  69. Harari I, Hughes TJR (1992) Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains. Comput Methods Appl Mech Eng 98:411–454

    MATH  MathSciNet  Google Scholar 

  70. Thompson LL, Pinsky PM (1995) A Galerkin least squares finite element method for the two-dimensional Helmholtz equation. Int J Numer Methods Eng 38:371–397

    MATH  MathSciNet  Google Scholar 

  71. Franca LP, Dutra do Carmo EG (1989) Galerkin gradient least-squares method. Comput Methods Appl Mech Eng 74:41–54

    MATH  MathSciNet  Google Scholar 

  72. Harari I (1997) Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics. Comput Methods Appl Mech Eng 140:39–58

    MATH  MathSciNet  Google Scholar 

  73. Babus̆ka I, Ihlenburg F, Paik ET, Sauter SA (1995) A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution. Comput Methods Appl Mech Eng 128:325–359

    MathSciNet  Google Scholar 

  74. Babus̆ka I, Sauter SA (1997) Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J Numer Anal 34:2392–2423

    MathSciNet  Google Scholar 

  75. Yue B, Guddati MN (2003) Highly accurate local mesh-dependent augmented Galerkin (L-MAG) FEM for simulation of time-harmonic wave propagation. In: Proceedings of the 16th ASCE engineering mechanics conference, Seattle, USA

  76. Melenk JM (1995) On generalized finite element methods. PhD thesis, University of Maryland at College Park

  77. Babus̆ka I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40:727–758

    MathSciNet  Google Scholar 

  78. Melenk JM, Babus̆ka I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314

    MATH  MathSciNet  Google Scholar 

  79. Laghrouche O, Bettess P (2000) Short wave modelling using special finite elements. J Comput Acoust 8:189–210

    MathSciNet  Google Scholar 

  80. Strouboulis T, Babus̆ka I, Copps K (2000) The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181:43–69

    MATH  MathSciNet  Google Scholar 

  81. Strouboulis T, Copps K, Babus̆ka I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190:4081–4193

    MATH  MathSciNet  Google Scholar 

  82. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    MATH  Google Scholar 

  83. Bouillard P, Suleau S (1998) Element-free Galerkin solutions for Helmholtz problems: formulation and numerical assessment of the polution effect. Comput Methods Appl Mech Eng 162:317–335

    MATH  Google Scholar 

  84. Suleau S, Deraemaeker A, Bouillard P (2000) Dispersion and pollution of meshless solutions for the Helmholtz equation. Comput Methods Appl Mech Eng 190:639–657

    MATH  MathSciNet  Google Scholar 

  85. Lacroix V, Bouillard P, Villon P (2003) An iterative defect-correction type meshless method for acoustics. Int J Numer Methods Eng 57:2131–2146

    MATH  Google Scholar 

  86. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37:141–158

    MATH  MathSciNet  Google Scholar 

  87. Hughes TJR (1995) Multiscale phenomena: Green’s functions, Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401

    MATH  Google Scholar 

  88. Hughes TJR, Feijoo GR, Mazzei L, Quincy J-B (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3–24

    MATH  MathSciNet  Google Scholar 

  89. Franca L, Farhat C, Macedo A, Lesoinne M (1997) Residual-free bubbles for Helmholtz equation. Int J Numer Methods Eng 40:4003–4009

    MATH  MathSciNet  Google Scholar 

  90. Brezzie F, Franca LP, Hughes TJR, Russo A (1997) b= g. Comput Methods Appl Mech Eng 145:329–339

    Google Scholar 

  91. Cipolla JL (1999) Subgrid modeling in a Galerkin method for the Helmholtz equation. Comput Methods Appl Mech Eng 177:35–49

    MATH  MathSciNet  Google Scholar 

  92. Oberai AA, Pinsky PM (1998) A multiscale finite element method for the Helmholtz equation. Comput Methods Appl Mech Eng 154:281–297

    MATH  MathSciNet  Google Scholar 

  93. Farhat C, Harari I, Franca LP (2001) The discontinuous enrichment method. Comput Methods Appl Mech Eng 190:6455–6479

    MATH  MathSciNet  Google Scholar 

  94. Farhat C, Harari I, Hetmaniuk U (2003) The discontinuous enrichment method for multiscale analysis. Comput Methods Appl Mech Eng 192:3195–3209

    MATH  MathSciNet  Google Scholar 

  95. Marburg S (2002) Six boundary elements per wavelength: is that enough? J Comput Acoust 10:25–51

    Google Scholar 

  96. Harari I, Hughes TJR (1992) A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics. Comput Methods Appl Mech Eng 98:77–102

    Google Scholar 

  97. Herrin DW, Martinus F, Wu TW, Seybert AF (2006) An assessment of the high frequency boundary element and Rayleigh integral approximations. Appl Acoust 67:819–833

    Google Scholar 

  98. Nagy AB, Fiala P, Marki F, Augustinovicz F, Degrande G, Jacobs S, Brassenx D (2006) Prediction of interior noise in buildings generated by underground rail traffic. J Sound Vib 293:680–690

    Google Scholar 

  99. DeBiesme FX, Verheij JW, Verbeek G (2003) Lumped parameter BEM for faster calculations of sound radiation from vibrating structures. In: Proceedings of the tenth international congress on sound and vibration, Stockholm, Sweden, pp 1515–1522

  100. DeBiesme FX, Verheij JW (2004) Speed gains of the lumped parameter boundary element method for vibroacoustics. In: Proceedings of the international conference on noise and vibration engineering ISMA2004, Leuven, Belgium, pp 3765–3778

  101. Fahnline JB, Koopman GH (1996) A lumped parameter model for the acoustic power output from a vibrating structure. J Acoust Soc Am 100:3539–3547

    Google Scholar 

  102. Perrey-Debain E, Trevelyan J, Bettess P (2004) Wave boundary elements: a theoretical overview presenting applications in scattering of short waves. J Eng Anal Bound Elem 28:131–141

    MATH  Google Scholar 

  103. Perrey-Debain E, Laghrouche O, Bettess P, Trevelyan J (2004) Plane wave basis finite elements and boundary elements for three dimensional wave scattering. Phil Trans R Soc A 362:561–577

    MATH  MathSciNet  Google Scholar 

  104. Chandler-Wilde NS, Langdon S, Ritter L (2004) A high-wavenumber boundary-element method for an acoustic scattering problem. Phil Trans R Soc A 362:647–671

    MATH  MathSciNet  Google Scholar 

  105. Arden S, Chandler-Wilde NS, Langdon S (2005) A collocation method for high frequency scattering by convex polygons. Technical Report Numerical Analysis Report 7/05, Reading University

  106. Huybrechs D, Vandewalle S (2006) On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J Numer Anal 44:1026–1048

    MATH  MathSciNet  Google Scholar 

  107. Huybrechs D, Vandewalle S (2005) The construction of cubature rules for multivariate highly oscillatory integrals. Technical Report Technisch rapport TW-442, KU Leuven

  108. Huybrechs D, Vandewalle S (2006) A sparse discretisation for integral equation formulations of high frequency scattering problems. Technical Report Technisch rapport TW-447, KU Leuven

  109. Huybrechs D (2006) Multiscale and hybrid methods for the solution of oscillatory integral equations. PhD thesis, KU Leuven, Leuven, Belgium. http://www.cs.kuleuven.be/~daan/phd/thesis.pdf

  110. Sakuma T, Yasuda Y (2002) Fast multipole boundary element method for large-scale steady-state sound field analysis. Part I: setup and validation. Acustica 88:513–525

    Google Scholar 

  111. Yasuda Y, Sakuma T (2002) Fast multipole boundary element method for large-scale steady-state sound field analysis. Part I: examination of numerical items. Acustica 89:28–38

    Google Scholar 

  112. Schneider S (2003) Application of fast methods for acoustic scattering and radiation problems. J Comput Acoust 11:387–401

    Google Scholar 

  113. Fischer M, Gauger U, Gaul L (2004) A multipole Galerkin boundary element method for acoustics. Eng Anal Bound Elem 28:155–162

    MATH  Google Scholar 

  114. Yasuda Y, Sakuma T (2005) An effective setting of hierarchical cell structure for the fast multipole boundary element method. J Comput Acoust 13:47–70

    MATH  Google Scholar 

  115. Yasuda Y, Sakuma T (2005) A technique for plane-symmetric sound field analysis in fast multipole boundary element method. J Comput Acoust 13:71–86

    MATH  Google Scholar 

  116. Fischer M, Gaul L (2005) Fast BEM-FEM mortar coupling for acoustic-structure interaction. Int J Numer Methods Eng 62:1677–1690

    MATH  Google Scholar 

  117. Cheung YK, Jin WG, Zienkiewicz OC (1991) Solution of Helmholtz problems by Trefftz method. Int J Numer Methods Eng 32:63–78

    MATH  Google Scholar 

  118. Herrera I (1984) Boundary methods: an algebraic theory. Pitman, London

    MATH  Google Scholar 

  119. Masson P, Redon E, Priou J-P, Gervais Y (1994) The application of the Trefftz method for acoustics. In: Proceedings of the third international congress on sound and vibration, Montreal, Canada, pp 1809–1816

  120. Sladek J, Sladek V, Van Keer R (2002) Global and local Trefftz boundary integral formulations for sound vibration. Adv Eng Softw 33:469–476

    MATH  Google Scholar 

  121. Zielinski AP, Zienkiewicz OC (1985) Generalized finite element analysis with T-complete boundary solution functions. Int J Numer Methods Eng 21:509–528

    MATH  Google Scholar 

  122. Zielinski AP, Herrera I (1987) Trefftz method: fitting boundary conditions. Int J Numer Methods Eng 24:871–891

    MathSciNet  Google Scholar 

  123. Qin Q-H (2000) The Trefftz finite and boundary element method. WIT Press, Southampton

    MATH  Google Scholar 

  124. Kompis V, Stiavnicky M (2005) Trefftz functions in FEM, BEM and meshless methods. In: Proceedings of the 10th international conference on numerical methods for continuum mechanics & the 4th international workshop on Trefftz methods, Zilina, Slovak Republic

  125. Ochmann M (1995) The source simulation technique for acoustic radiation problems. Acustica 81:512–527

    MATH  Google Scholar 

  126. Cessenat O, Deprés B (1998) Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J Numer Anal 35:255–299

    MATH  MathSciNet  Google Scholar 

  127. Kansa EJ (1990) Multiquadrics: a scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19:147–161

    MathSciNet  Google Scholar 

  128. Van Hal B (2004) Automation and performance optimization of the wave based method for interior structural-acoustic problems. PhD thesis, KU Leuven, Leuven, Belgium. http://www.mech.kuleuven.be/dept/resources/docs/vanhal.pdf

  129. Farhat C, Harari I, Hetmaniuk U (2003) A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency range. Comput Methods Appl Mech Eng 192:1389–1419

    MATH  MathSciNet  Google Scholar 

  130. Tezaur R, Farhat C (2006) Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int J Numer Methods Eng 66:796–815

    MATH  MathSciNet  Google Scholar 

  131. Jirousek J, Wróblewski A (1994) Least-squares T-elements: equivalent FE and BE forms of substructure oriented boundary solution approach. Commun Numer Methods Eng 10:21–32

    MATH  Google Scholar 

  132. Stojek M (1996) Finite T-elements for the Poisson and Helmholtz equations. PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

  133. Stojek M (1998) Least-squares Trefftz-type elements for the Helmholtz equation. Int J Numer Methods Eng 41:831–849

    MATH  MathSciNet  Google Scholar 

  134. Monk P, Wang D-Q (1999) A least-squares method for the Helmholtz equation. Comput Methods Appl Mech Eng 175:121–136

    MATH  MathSciNet  Google Scholar 

  135. Riou H, Ladeveze P, Rouch P (2004) Extension of the variational theory of complex rays to shells for medium-frequency vibrations. J Sound Vib 272:341–360

    Google Scholar 

  136. Desmet W (1998) A wave based prediction technique for coupled vibro-acoustic analysis. PhD thesis, KU Leuven, Leuven, Belgium. http://people.mech.kuleuven.ac.be/~wdesmet/desmet_phd_thesis.pdf

  137. Pluymers B, Vanmaele C, Desmet W, Vandepitte D, Sas P (2004) Application of a novel wave based prediction technique for acoustic cavity analysis. In: Proceedings of the 30th German convention on acoustics (DAGA) together with the 7th congrès Francais d’acoustique (CFA), Strasbourg, France, pp 313–314

  138. Pluymers B (2006) Wave based modelling methods for steady-state vibro-acoustics. PhD thesis, KU Leuven, Leuven, Belgium. http://people.mech.kuleuven.be/~bpluymer/docs/thesis_bpluymers.pdf

  139. Pluymers B, Vanmaele C, Desmet W, Vandepitte D (2005) Application of a hybrid finite element—Trefftz approach for acoustic analysis. In: Proceedings of the 10th international conference on numerical methods for continuum mechanics & the 4th international workshop on Trefftz methods, Zilina, Slovak Republic

  140. Van Genechten B, Pluymers B, Vanmaele C, Vandepitte D, Desmet W (2006) On the coupling of wave based models with modally reduced finite element models for structural-acoustic analysis. In: Proceedings of the international conference on noise and vibration engineering ISMA2006, Leuven, Belgium, pp 2383–2404

  141. Benamou JD, Depres B (1997) A domain decomposition method for the Helmholtz equation and related optimal control problems. J Comput Phys 136:68–82

    MATH  MathSciNet  Google Scholar 

  142. Koopmann GH, Song L, Fahnline JB (1989) A method for computing acoustic fields based on the principle of wave superposition. J Acoust Soc Am 86:2433–2438

    Google Scholar 

  143. Stupfel B, Lavie A, Decarpigny JH (1988) Combined integral equation formulation and null-field method for the exterior acoustic problem. J Acoust Soc Am 83:927–941

    Google Scholar 

  144. Reutskiy SY (2006) The method of fundamental solutions for Helmholtz eigenvalue problems in simply and multiply connected domains. Eng Anal Bound Elem 30:150–159

    Google Scholar 

  145. Ochmann M (1999) The full-field equations for acoustic radiation and scattering. J Acoust Soc Am 105:2574–2584

    Google Scholar 

  146. Ochmann M (2004) The complex equivalent source method for sound propagation over an impedance plane. J Acoust Soc Am 116:3304–3311

    Google Scholar 

  147. Pavic G (2005) An engineering technique for the computation of sound radiation by vibrating bodies using substitute sources. Acustica 91:1–16

    Google Scholar 

  148. Pavic G (2005) A technique for the computation of sound radiation by vibrating bodies using multipole substitute sources. In: Proceedings of the international congress on noise and vibration emerging methods (NOVEM2005), Saint-Raphael, France

  149. Bouchet L, Loyau T, Hamzaoui N, Boisson C (2000) Calculation of acoustic radiation using equivalent-sphere methods. J Acoust Soc Am 107:2387–2397

    Google Scholar 

  150. Reboul E, Perret-Liaudet J, Le Bot A (2005) Vibroacoustic prediction of mechanisms using a hybrid method. In: Proceedings of the international congress on noise and vibration emerging methods (NOVEM2005), Saint-Raphael, France

  151. Herrin DW, Wu TW, Seybert AF (2004) The energy source simulation method. J Sound Vib 278:135–153

    Google Scholar 

  152. Chen W (2002) Symmetric boundary knot method. Eng Anal Bound Elem 26:489–494

    MATH  Google Scholar 

  153. Goldbert MA, Chen CS (1999) The MFS for potential, Helmholtz and diffusion problems. In: Golberg MA (ed) Boundary integral methods: numerical and mathematical aspects. WIT Press and Computational Mechanics Publ, Boston Southampton, Chapter 4

    Google Scholar 

  154. Alves CJS, Valtchev SS (2005) Numerical comparison of two meshfree methods for acoustic wave scattering. Eng Anal Bound Elem 29:371–382

    Google Scholar 

  155. Limic N (1981) Galerkin-Petrov method for Helmholtz equation on exterior problems. Glas Math 36:245–260

    MathSciNet  Google Scholar 

  156. Fairweather G, Kargeorghis A (1998) The MFS for elliptic BVPs. Adv Comput Math 9:69–95

    MATH  MathSciNet  Google Scholar 

  157. Chen CS, Golberg MA, Schaback RS (2002) Transformation of domain effects to the boundary. In: Rashed YF (ed) Recent developments of the dual reciprocity method using compactly supported radial basis functions. WIT Press, Southampton, Chapter 8

    Google Scholar 

  158. Huttunen T, Gamallo P, Astley RJ (2006) Comparison of two wave element methods for the Helmholtz problem. Comput Methods Appl Mech Eng

  159. Sas P, Desmet W, Van Hal B, Pluymers B (2001) On the use of a wave based prediction technique for vehicle interior acoustics. In: Proceedings of the Styrian noise, vibration & harshness congress: integrated vehicle acoustics and comfort, Graz, Austria, pp 175–185

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Pluymers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pluymers, B., van Hal, B., Vandepitte, D. et al. Trefftz-Based Methods for Time-Harmonic Acoustics. Arch Computat Methods Eng 14, 343–381 (2007). https://doi.org/10.1007/s11831-007-9010-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-007-9010-x

Keywords

Navigation